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Abstract

We claim that presenting a human operator in
charge of repairing a faulty system with a small
subset of observations relevant to the failure im-
proves awareness and confidence of the operator.
Consequently, we introduce and formalise the no-
tion of a set of relevant observations that derive
the same diagnosis as the full observations – we
call these the critical observations. We show how
this set can be identified algorithmically and illus-
trate its benefits on an instance of a real diagnostic
problem.

1 Introduction

In the context of diagnosis, more observations of the system
under consideration generally improves the quality and pre-
cision of the diagnosis. A greater number of observations
means a reduction in the number of unknown variables, and
consequently a reduction in the complexity of the problem.

However, there are disadvantages that arise with an in-
crease in observations. Pertinent to this paper is the par-
ticular context where a human operator is involved in the
monitoring loop. We seek to present the operator with not
only the diagnosis, but also a justification or rational expla-
nation as to how the diagnosis was arrived at. The full set of
observations in many cases is too large and varied to serve
as an effective solution to this requirement, so the question
becomes one of determining the most relevant observations.
We make the assumption that the smaller this set of obser-
vations is, the better it serves the purpose of convincing an
operator of the rationality of the presented diagnosis.

As further motivation, consider the following examples.
In the state of Victoria, Australia, the government has man-
dated interval smart meters for 2.6 million electricity cus-
tomers. Each of these meters provides information on elec-
tricity consumption every thirty minutes, for an average
of 1.4 thousand per second. NASA provide a diagnostic
benchmark system called ADAPT [1], used for the Diagnosis
Competition, that involves 87 sensors operating at reporting
frequencies of 1 or 2 Hz, and occasionally 10 Hz. In either
scenario the raw number of observations is much too great
for a human operator to process. In both, however, we posit
that a small subset of observations is generally enough to
convince an operator of the validity of the diagnosis.
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For this work we use a consistency- and model- based ap-
proach, where a diagnosis is a set of faults that does not con-
tradict the observations as applied to the model. We assume
that operators are only concerned with minimal diagnoses
(as detailed in §3), which implies that observations that do
not deviate from the norm can generally be ignored. We also
take that the minimal diagnoses for a problem have already
been computed. We show that under these assumptions a
subset of observations can be used to prove two related re-
sults on the problem: (1) the minimality of a presented diag-
nosis, and (2) the completeness of the presented set of mini-
mal diagnoses. We then present a procedure to compute the
critical subset of observations — the minimal set of obser-
vations that allows us to prove either of the aforementioned
results.

The method presented is developed in the context of
steady state systems, but can be extended to dynamic state-
driven systems. The method can also be extended to event-
based observations; this is more complicated however, and
is discussed in the conclusion.

This paper is structured as follows: We initially give a
simple worked example before providing the basic defini-
tions of diagnosis. We then present the necessary theory to
establish formally the notion of what we call the critical ob-
servations, and provide a procedure for the identification of
said observations. We illustrate the results on the ADAPT-
lite benchmark and conclude with a discussion on related
works and possible extensions.

2 Worked Example

We provide a simple example that illustrates the problem,
and will refer back to this example multiple times through-
out. Figure 1 shows a simplified version of a power net-
work. Electricity flows from the root through each of the
buses (b0, b1, . . .) through to components (x0, x1, . . .) at the
bottom of the tree. Each component has an associated sen-
sor (s0, s1, . . .) which, for simplicity, cannot itself be faulty
and only indicates whether the flow of power to the compo-
nent is nominal or not.

The outputs of any given node in the network are normal
provided that the input on that node is normal and the node
itself is not faulty. We assume that the input to root is nor-
mal. The diagnoses for this network will then therefore be
the set of buses that precisely cover the set of abnormal sen-
sors. It is important to note that no sensor is redundant, as a
fault on xi will only be detectable by si.

We assume that the two sensors s2 and s3 return abnor-
mal observations whilst all other observations are nominal.
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Figure 1: A Simple Power Network. s2 and s3 are reporting
"abnormal"

Under this assumption it is obvious that the fault(s) origi-
nate either from b3 or from both x2 and x3. Bus b0 and root
can be exonerated as only sensors s2 and s3 are affected,
and we would expect other descendents would also report
abnormality if either were the cause.

In this instance, it is clear that not every observation (the
readings on all sensors) is needed to produce a useful diag-
nosis. The issue is in computationally identifying the rele-
vant observations that could be used to produce an identical
diagnosis.

3 Diagnosis Framework

We make use of the standard general framework for model-
based diagnosis [2; 3].

Definition 1. The system model, Mod, is a tuple
〈Comps, SD〉 where Comps is a set of components and SD
is a statement in first order logic encoding the system be-
haviour. We use Ab(c) to specify that component c ∈ Comps
is behaving abnormally.

Definition 2. The observations, Obs, are a set of logical
statements.

Definition 3. A diagnostic problem, P , is a tuple
〈Mod,Obs〉.

Definition 4. A diagnostic hypothesis, δ, is a subset of
Comps that implicitly defines the following conjunction:

Φ(δ) ≡

(

∧

c∈δ

Ab(c)

)

∧





∧

c∈Comps\δ

¬Ab(c)



 . (1)

That is, the components c ∈ δ are those believed to be be-
having abnormally (thus Ab(c)), and all c /∈ δ are those
believed to be behaving normally (thus ¬Ab(c)).

Definition 5. The diagnoses of a problem P are the hy-
potheses, δ, that are logically consistent with the system and
the observations. We define a function, ∆, over problems
that returns the set of the diagnoses for P:

∆(P) =
{

δ ∈ 2Comps | SD,Obs,Φ(δ) 2 ⊥
}

(2)

A diagnosis (δ ∈ ∆) is minimal if no proper subset of δ is
also a diagnosis. We define another function, ∆min, over
problems that returns the set of minimal diagnoses for P .

∆min(P) = {δ ∈ ∆(P) | ∄δ′ ∈ ∆(P) . (δ′ ( δ)} . (3)

We useD to represent a set of minimal diagnoses andDC to
represent a complete set of minimal diagnoses.

The goal of diagnosis is to determine which components
in a given system are faulty. We consider consistency-based
diagnosis, where a diagnosis is any hypothesis that is con-
sistent with the observations; that is, it is possible to assign
the system variables in a way that agrees with the model and
the observations.

Running Example

To model our example network (presented in §2), we de-
fine three binary predicates, i, o1, o2, representing input and
(multiple) outputs of each component respectively, with two
symbols N,A representing normal and abnormal. Under
such definitions the fact that the input on α is normal would
be modelled by i(α,N). The buses are then modelled by:

oj(α,N)←→ (¬Ab(α) ∧ i(α,N)). (4)

The connections between buses are then modelled by:

oj(α1, N)←→ i(α2, N) (5)

such that the connection between b0 and b2 is represented
by o1(b0, N)←→ i(b2, N).

Consider the hypothesis δ0 = ∅which posits that no com-
ponent is faulty. We say that δ0 is not consistent with the
observations i(s2, A) and i(s3, A), as our model predicts
nominal observations. The possible diagnoses are then:

∆(P)={{b3}, {b3,x2}, {b3,x3}, {x2,x3}, {b3,x2,x3}} .
(6)

Taking δ1 = {b3} and δ2 = {x2, x3}, we then have
∆min(P) = {δ1, δ2}. This should be interpreted as follows:
either b3 is faulty or both x2 and x3 are. In the event that b3
is faulty, it is possible that there are other faulty components
(x2, x3), but there is no a priori reason to assume this, thus
supersets of δ1 are not members of ∆min.

4 Critical Observations

We now present key results that allow us to formalize the
problem of finding a subset of observations that are suffi-
cient to infer the same diagnoses as those of a given diagno-
sis problem.

We first remind readers of the motivation driving this sec-
tion, and support it by example. The concept of a diagnostic
subproblem – a reduced version of a given diagnostic prob-
lem – is then introduced and forms the crux of the approach
we use to compute the critical observations. Three lemmas
are presented that concretely relate properties of the sub-
problem to that of the parent problem. These lemmas form
the foundation on which the formal definitions of both suf-
ficient and critical observations are built on, which are then
presented.

4.1 Motivation

Understanding the implications of a given diagnoses is
important in determining the appropriate reparation or
workaround actions. One way to improve awareness of, as
well as trust in, a given diagnoses is for the human opera-
tor in charge to be able to relate it to the observations that
produced it. In a real system with thousands of observa-
tion inputs however, this is not a trivial task. Providing the
operator the relevant observations therefore becomes a very
useful tool for decision support.



Running Example

Returning to our running example, we previously computed
the minimal diagnoses as δ1 = {b3} and δ2 = {x2, x3}. In
this scenario, it is obvious that the observations provided by
s2 and s3 are crucial to explaning hypothesis δ2. Further-
more, the observations provided by s0 or s1 allow us to dis-
regard b0 and root as potential candidates, so keeping one
of the nominal observations is considered useful. The other
nominal observations, however, are not similarly useful ex-
cept to say that no other incident is taking place in the rest of
the network, and the assumption of which was already used
in the computation of the minimal diagnoses.

4.2 Diagnostic Subproblems

We now present the notion of diagnostic subproblems and
the properties that link the diagnoses of problems to their
subproblems. We assume at this stage that (some or all of)
the minimal diagnoses of the problem, P , have been com-
puted.

Definition 6. Take diagnosis problem P = 〈Mod,Obs〉. A

subproblem of P is a problem P ′ =
〈

Mod′,Obs′
〉

such that

Mod′ = Mod and Obs′ ⊆ Obs. That is, some observations
are no longer considered. We write P ⊒ P ′.

We now establish three lemmas that are crucial to this
work. For the remainder of this section we take P to be a
diagnosis problem, and P ′ to be a subproblem of P as given
by Definition 6. We take for granted the monotonicity of en-
tailment — whereby adding logical statements (state-based
observations) cannot make an already invalid explanation
valid.

The first lemma establishes that any diagnosis of a prob-
lem, P , must also be a diagnosis for the subproblem,P ′.

Lemma 4.1. ∆(P) ⊆ ∆(P ′)

Proof. By contradiction.
Take some δ ∈ ∆(P) and assume that δ /∈ ∆(P ′). Set
ϕ = Obs \ Obs′.
From assumption, δ /∈ ∆(P ′) implies (SD,Obs′, δ) � ⊥.
But, by monotonicity of entailment: (SD,Obs′, δ, ϕ) � ⊥,
This implies δ /∈ ∆(P), contradicting the initial premise.

Lemma 4.1 is an important formal statement that we can-
not lose diagnoses by reducing the set of observations, and
is needed for Lemma 4.2. An important edge case is the ter-
minal where Obs′ = ∅— in the absence of any observation,
all possible diagnoses become feasible. That is to say, a
consistency checker will not find an inconsistency with any
diagnosis if there is no information from the system to claim
otherwise.

Lemma 4.2. ∆min(P ′) ∩∆(P) ⊆ ∆min(P)

Proof. By contradiction.
Take some δ ∈ ∆min(P ′) ∩ ∆(P), and assume δ /∈
∆min(P).
From assumption, ∃δo ( δ, with δo ∈ ∆(P).
From Lemma 4.1, δo ∈ ∆(P) implies that δo ∈ ∆(P ′).
However since δo ( δ, we have δ /∈ ∆min(P

′) (defini-
tion 5), which contradicts the initial premise.

Lemma 4.2 shows that any diagnosis for the original in-
stance, P , that is minimal for P ′ must then also be minimal

for P . Keeping in mind that the minimality of a diagno-
sis provides a way of distinguishing whether one solution is
better than another, this lemma provides an important con-
sequence — if a subset of observations allows the claim that
no strictly better solutions than δ exists, then the claim is
also allowed with the original set of observations. In other
words, we have shown that using a subset of the original ob-
servations is a legitimate way of proving the minimality of
a diagnosis.

Running Example

To illustrate this lemma, we refer back to our running ex-
ample. Take a subproblem P ′

α with reduced observations
Obs′ = {o(s2, A), o(s5, N), o(s7, N)}. Using only Obs′,
we arrive at possible minimal diagnoses of {x2}, {b3}, and
{b0}. Note that ∆min(P ′

α) ∩ ∆(P) = {b3} and from
Lemma 4.2, {b3} ∈ ∆min(P). Conversely, {x2} and {b0}
are therefore not minimal diagnoses of P .

The next lemma improves this result by showing that
there are no other minimal diagnoses other than those im-
plied by the subproblem.

Lemma 4.3. ∆min(P ′)⊆∆(P)⇒ ∆min(P)⊆∆min(P ′)

Proof. By contradiction.
Take∆min(P ′)⊆∆(P), and assume ∆min(P) 6⊆∆min(P ′).
From assumption, there exists δ ∈ ∆min(P) \∆min(P ′).
By definition δ ∈ ∆(P), and from Lemma 4.1, δ ∈ ∆(P ′).
As δ /∈ ∆min(P ′), there exists δo ∈ ∆min(P ′) such that
δo ( δ. From the premise, δo ∈ ∆min(P ′) ⇒ δo ∈ ∆(P).
However this contradicts the consequence of the assump-
tion, δ ∈ ∆min(P).

The final lemma establishes that if all minimal diag-
noses of P ′ are also diagnoses of P , then all minimal di-
agnoses of P are minimal diagnoses of P ′. We can com-
bine Lemma 4.2 with Lemma 4.3 to prove that if all mini-
mal diagnoses of P ′ are diagnoses of P , then ∆min(P) =
∆min(P ′).

Consequently, if a subset of observations projects that a
system is experiencing all the faults from at least one of
the set of hypotheses {δ1, . . . , δk}, then this claim is true
with the original set of observations. In other words, we are
proving that there is no alternative explanation to the obser-
vations than ∆min(P ′) (though the reality could indeed be
worse than a minimal diagnosis).

There are some caveats, however. Whilst a subset of ob-
servations is sufficient to disprove the validity of a diagnosis
(Lemma 4.1), it is not sufficient in general to prove its va-
lidity. Indeed, notice that both Lemma 4.2 and Lemma 4.3
apply only to the minimal diagnoses of P ′ that are also di-
agnoses of P .

Futhermore, these results hold in a consistency-based di-
agnostic framework, but not in a probabilistic one. Logical
consistency-based diagnosis (2 ⊥) enjoys the monotonicity
of entailment that probabilistic frameworks unfortunately
do not, as an explanation which was unlikely (compared to
other explanations) can suddenly become highly probable if
added observations support this explanation and contradict
others.

4.3 Sufficient & Critical Sets

We now present the concept of sufficient observations and
formalise the problem of finding a minimal sufficient sub-
problem.



Take a set D of diagnoses for the problem P (i.e., D ⊆
∆(P)). We are interested in proving two properties on D:

• Minimality: D ⊆ ∆min(P), i.e., there are no strictly
better explanations than those of D;

• Completeness: D = ∆min(P), i.e., there are no alter-
native explanations than those of D.

Take diagnosis problem P and its subproblem P ′. Take
a set D of diagnoses of P and a property of D with re-
spect to P . Subproblem P ′ is sufficient for this property
if the property of D can be proved using only P ′. Formally
suff (D,P ′) is a predicate that satisfies:

∀D ⊆ ∆(P) :
suff ♯(D,P

′)⇔
∀P ′′ ⊒ P ′ . [D ⊆ ∆(P ′′)⇒ D ♯ ∆min(P ′′)] ,

(7)

where ♯ is either ⊆ or = depending on whether we want
to prove minimality or completeness. P ′′ in the equation
above is introduced as the only details we recall from P are
that P ⊒ P ′ and D ⊆ ∆(P), thus P ′ will be sufficient for
all parent problems, P ′′ (including P), whereD ⊆ ∆(P ′′).

As mentioned, we assume that a more concise set of ob-
servations better serves the purpose of providing a rational
explanation to a human operator in a diagnosis loop. A criti-
cal subproblem is therefore a sufficient problem from which
no further observation can be removed:

Definition 7. Take a diagnosis problem P and its subprob-
lem P ′. Take a set D of diagnoses of P and a property of D
with respect to P . SubproblemP ′ is critical for this property
if it is sufficient and no strict subproblem of P ′ is sufficient
(minimal).

We now demonstrate what the sufficiency predicate prac-
tically represents and illustrate these results on the running
example.

Theorem 4.4. The following two equivalences hold:

suff ⊆(D,P
′) ≡ (D ⊆ ∆min(P

′)) (8)

suff =(D,P
′) ≡ (D = ∆min(P

′)) (9)

Proof. We concentrate on suff ⊆ as the same argument can
be used for suff =.
[⇒] By construction.
Assume P ′′ ⊒ P ′, D ⊆ ∆(P ′′), and D ⊆ ∆min(P ′), then
from Lemma 4.2, D ⊆ ∆min(P ′′).
[⇐] By contrapositive.
AssumeD 6⊆ ∆min(P ′). Take P ′′ = P ′; then P ′′ ⊒ P ′ and
D ⊆ ∆(P ′′) (since D ⊆ ∆(P)). Clearly D 6⊆ ∆min(P ′′).

In other words, under the assumption that D is a set of
diagnoses of problem P , minimality (or completeness re-
spectively) of D can be proved by demonstrating that D is
minimal (or complete respectively) for problem P ′.

Running Example

Considering our previous example, taking D1 = {δ1} =
{{b3}}, a critical subproblem that proves minimality of D1

is formed by selecting a critical (minimal) subset of obser-
vations for which δ1 is a minimal diagnosis. The singleton
{o(s2, A)} is sufficient to prove minimality of D1, which is
quite intuitive: considering only the information that i) the
output of s2 is abnormal and ii) that the other (hidden) ob-
servations do not contradict the diagnosis δ1, then the fact
that δ1 is a minimal diagnosis is obvious.

Similarly a critical subproblem proving completeness of
D1,2 = {δ1, δ2}, where δ2 = {x2, x3}, necessitates the
identification of a subset of observations whose correspond-
ing set of minimal diagnoses is exactly D1,2. One such crit-
ical subset is {o(s1, N), o(s2, A), o(s3, A)}. Again, this is
quite intuitive: the two abnormal observations alone leave
that at least one of root, b0, b3, or both x2 and x3 are faulty,
and adding the nominal observation of s1 shows that the first
two options (root and b0) are inconsistent with the observa-
tions, thus invalidating them.

Notice that the observations on the right side of the net-
work are not part of any critical set of observations. This is
because they exonerate the components on the right side of
the network that we have no reason to suspect. One could
claim that they do exonerate the suspect root, and this is
interesting information for completeness, however, this in-
formation is strictly subsumed by that of the observations
from s0 and s1, which also exonerates bus b0.

5 Finding Critical Observations

Having defined critical subproblems — a minimal subprob-
lem that remains sufficient — we wish to now find one.

It is easily shown that sufficiency as defined is a mono-
tonic property; if a subproblem is not sufficient then nei-
ther are its subproblems. Therefore, an approach to find-
ing a critical subproblem consists of iteratively testing
whether removing a specific observation maintains the re-
quired properties or not.

As outlined in § 4, crucial to determining the sufficiency
of a subproblem is verifying that D ⊆ ∆min(P ′) or D =
∆min(P ′). The naïve way of achieving this is by computing
the set of minimal diagnoses of this subproblem and explic-
itly confirming the relation between D and ∆min(P ′). This
operation, however, is potentially expensive and we instead
present an alternative that avoids this expense.

One of the consequences of Lemma 4.1, is that remov-
ing observations can only increase the total number of diag-
noses; therefore, we need to make sure that these added di-
agnoses do not affect the relation betweenD and ∆min(P ′).
It is possible to identify which hypotheses should not ever
be added to the set of diagnoses. We call this set, ∇, the
Excluded Hypotheses.

Using ∇, we propose a consistency check that verifies
whether any of these excluded hypotheses are consistent
with the model and the observations of the subproblem such
that they can be accounted for. ∇ can be quite large and
it should not be enumerated; we present at the end of this
section a method of representing this set in a logical and
compact formulation.

5.1 Excluded Hypotheses –∇

With respect to minimality, we need to prevent diagnoses
that would invalidate the minimality property of those al-
ready in D, so we define:

∇(D) =
{

δo ∈ 2Comps | ∃δ ∈ D . δo ( δ
}

(10)

and present a companion lemma:

Lemma 5.1.
D ⊆ ∆(P)⇒ ((∇(D) ∩∆(P ′)) = ∅ ⇔ D ⊆ ∆min(P ′))

Proof. Take D ⊆ ∆(P). From Lemma 4.1, D ⊆ ∆(P ′).



[⇒] By contradiction.
Take (∇(D) ∩∆(P ′)) = ∅ and assume D * ∆min(P ′).
From assumption, ∃δ ∈ D such that δ /∈ ∆min(P ′).
Therefore, ∃δo ( δ such that δo ∈ ∆min(P ′).
But δo ∈ ∇(D), δo ∈ ∆(P ′) by definition.
Therefore (∇(D) ∩ ∆(P ′)) 6= ∅, contradicting the second
premise.

[⇐] By contradiction.
Take D ⊆ ∆min(P ′) and assume (∇(D) ∩∆(P ′)) 6= ∅.
Then ∃δo ∈ (∇(D) ∩∆(P ′)).
However, δo ∈ ∇(D) ⇒ ∃δ ∈ D such that δo ( δ, and
δo ∈ ∆(P ′).
But ((δo ( δ)∧(δo ∈ ∆(P))∧(δ ∈ D))⇒ D * ∆min(P ′),
contradicting the second premise.
Both directions of the bi-implication are satisfied under the
initial premise.

This lemma demonstrates that we can show D is a set of
minimal diagnoses for P ′ if ∇ does not contain any diag-
noses for P ′. Combined with Lemma 4.2, this implies that
D is a set of minimal diagnoses for the parent problem, P ,
as well.

However, this still does not prevent the adding of new
minimal diagnoses that are disjoint to the existing members
ofD (with respect to the components). To preserve the com-
pleteness of the original set, we need to exclude all remain-
ing hypotheses (in addition to∇):

∇C(D) =
{

δo ∈ 2Comps | ∄δ ∈ D . δ ⊆ δo
}

(11)

and present a companion lemma:

Lemma 5.2.
D ⊆ ∆(P)⇒

(

(∇C(D) ∩∆(P ′)) = ∅ ⇔ D = ∆min(P ′)
)

Proof. Take D ⊆ ∆(P). From Lemma 4.1, D ⊆ ∆(P ′).

[⇒] By contradiction.
Take (∇C(D) ∩∆(P ′)) = ∅ and assume D 6= ∆min(P ′).
There are two cases:
[1]: ∃δ ∈ D such that δ /∈ ∆min(P ′).
However, δ ∈ ∆(P ′), and therefore ∃δo ⊆ δ such that δo ∈
∇C ∧ δo ∈ ∆min(P ′).
Therefore (∇C(D)∩∆(P ′)) 6= ∅, contradicting the second
premise.

[2]: ∃δ ∈ ∆min(P ′) such that δ /∈ D.
There are two further subcases:
[2a]: ∃δo ∈ D such that δo ) δ and thus δ ∈ ∇C(D) giving
(∇C(D) ∩∆(P ′)) 6= ∅, or
[2b]: δ is disjoint to every element in D, and thus
δ ∈ ∇C(D) giving (∇C(D) ∩∆(P ′)) 6= ∅.
In either case, this contradicts the second premise.

[⇐] By contradiction.
Take D = ∆min(P ′) and assume (∇C(D) ∩∆(P ′)) 6= ∅.
Then ∃δo ∈ (∇C(D) ∩∆(P ′)).
However, this δo is a valid diagnosis (δo ∈ ∆(P ′)) and is
disjoint from all diagnoses in D and as such δo ∈ ∇C(D)
Therefore ∃δq ⊆ δo such that δq ∈ ∆min(P ′).
Therefore δq ∈ D, but δq ∈ D ⇒ δo /∈ ∇C(D), contradict-
ing the premise. Both directions of the bi-implication are
satisfied under the initial premise.

Again, this lemma demonstrates that completeness of D
can be proved by showing that none of the excluded hy-
potheses in ∇C contradict the subset of observations in P ′.

The key characteristic of the solution, Obs′, is that it de-
fines a diagnostic problem to which the set of diagnoses
does not intersect either ∇ or ∇C . We can interpret ∇ as
a disjunction and evaluate the consistency of:

SD,Obs′,Φ(∇)
?

� ⊥. (12)

If a contradiction is derived, then Obs′ is sufficient to
prove the required property on D. Notice that sufficiency
is proved when an inconsistency is found, while the validity
of a hypothesis is proved when there is no inconsistency.

Running Example

Referring back to our example in §2, we can compute a suf-
ficient (and indeed, critical) set of observations.

Taking D1,2 = {δ1, δ2}, we can compute∇(D):

∇(D1,2) = {∅, {x2} , {x3}} (13)

This result shows that a subset of observations is sufficient
to prove minimality of D1,2 if it excludes three hypothe-
ses: ∅ (no component is faulty), {x2} (only component x2

is faulty) and {x3}. There is only one critical subset of ob-
servations that achieves this: {o(s2, A), o(s3, A)}. Our ex-
ample is small enough that we can intuitively grasp which
observations are required, but as mentioned earlier, we can
compute it by iteratively testing whether removing a specific
observation effects the required properties.

If we only considerD1 = {δ1}, we obtain∇(D1) = {∅},
indicating that a subset of observations is sufficient to prove
minimality of D1 if it excludes only the hypothesis that no
component is faulty, and thus only a single observation (e.g.,
o(s2, A)) is necessary to achieve this.

Consider now the completeness of D1,2. The set

∇C(D1,2) is defined by:

∇C(D1) = {{b0} , {x0} , . . . , {b0, x0} , {b0, x2} , . . .}
(14)

In words, this is all hypotheses that do not include b3, and/or
x2 and x3 together, more than 10, 000 elements. As∇C(D)
will always be a superset of ∇(D), a critical subset for
completeness is always a superset of a critical subset for
minimality. Therefore we must include the observations
o(s2, A) and o(s3, A), which has the effect of ruling out ev-
ery hypothesis that does not mention root, b0, b3, x2 or x3.
Adding the observation o(s0, N) has the effect of remov-
ing the hypotheses that mention b0 or root, leaving only hy-
potheses that consistent with the model — those that include
b3 or both x2 and x3 — none of which belongs to∇C(D1).
This is visualized in Figure 2.

If we tried to prove completeness of (the incomplete)D1,
we would end up with a set ∇C(D1) containing δ2. As δ2
is a diagnosis, it is also a diagnosis of all subproblems and
there is no critical set of observations.

Notice that all the critical sets presented above consider
the observation o(s4, N) as irrelevant, among other things
it indicates that component x4 is nominal. Keep in mind,
however, that we are only interested in the minimal diag-
noses. The established minimal diagnoses for the problem
do not say anything about the state of component x4 except
that there is no reason to suspect x4 of being faulty.
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Figure 2: A Simple Power Network. Retaining only the
critical observations on s0, s2, and s3

5.2 Symbolic Representation of ∇
In the small running example with less than twenty compo-
nents, the set ∇C already contains over 10, 000 elements.
Since the size of this set increases exponentially with the
number of components, it is impractical to enumerate it.
Fortunately the consistency checker does not need an ex-
plicit enumeration, but can use the symbolic representation
that we now present.

Assume that D is a singleton hypothesis, {δ}, where δ
may contain several components. The set ∇(D) = {δ} can
be represented symbolically as follows:

Γ(∇(Dδ)) ≡





∧

c∈Comps\δ

¬Ab(c)



 ∧

(

∨

c∈δ

¬Ab(c)

)

.

(15)

The symbolic representation for a non-singleton is simply
the disjunction of the singleton representations for each of
hypotheses in D.

In our running example, D2 = {δ2}, the minimality of
δ2 is ensured by proving that the joint assumptions: (1) no
component outside δ2 is faulty, and (2) not both of com-
ponents x2 and x3 are faulty, contradict the model and the
observations. This representation is linear in the size of
Comps.

We now turn to ∇C . The symbolical representation of
∇C(D) is:

Γ(∇C(D)) ≡
∧

δ∈D

(

∨

c∈δ

¬Ab(c)

)

. (16)

While the size of ∇C(D) is exponential in the size of
Comps, this representation is only linear in the size of D
and does not directly depend on the size of Comps (bearing
in mind that the size D may be exponential in the size of
Comps).

Running Example

Back to the example, recall thatD1,2 = {δ1, δ2}. Complete-
ness of D1,2 is ensured by proving that the following joint
assumptions contradict the model and the observations:

• component b3 is not faulty, and

• not both of components x2 and x3 are faulty (i.e. only
one or zero are).

6 Illustration on ADAPT-lite

We now present an example taken from the ADAPT-lite
track used as part of the 2009 International Workshop on

Principles of Diagnosis (DX) Competition [1]. The hard-
ware system for the DXC–09 Industrial Track is the Electri-
cal Power System testbed in the ADAPT lab at NASA Ames
Research Center.

The ADAPT EPS testbed provides a means for evaluat-
ing diagnostic algorithms through the controlled insertion
of faults in repeatable failure scenarios. The lite version of
ADAPT is depicted in Figure 3. The sensors on the ADAPT

system return observations at a rate of 1, 2, or 10Hz, which,
on the full system, produces nearly one thousand, often ten
digit, information inputs per second. We used a model that
combines first order logic with linear arithmetics, and we
use an SMT solver for the consistency checks [4].

The specific approach used for this problem differs from
the one presented in that it does not consider minimality
with respect to set inclusion but with respect to cardinal-
ity — diagnoses that minimize the number of faulty com-
ponents. This change is made as the ADAPT sensors them-
selves may be faulty, whereas we had previously assumed
otherwise. This can lead to unrealistic minimal diagnoses
that involve most sensors being faulty, and the minimality
of these diagnoses requires at least one observation from
each sensor. The extension of our work to minimal cardi-
nality, and in particular the representation of the ∇ sets, is
very similar in construction.

Figure 4 shows a reduced example of observation trace
on the ADAPT-lite system. The system has a number of
observation providing sensors: voltage and current sensors
on the line (in blue and yellow), temperature sensors on
the battery, position sensors on ciruit breakers and relays,
(in purple) and a speed transmitter on the fan. The sin-
gle minimal-cardinality diagnosis in this problem posits that
Sensor IT240 (current flow in amperes) suddenly suffers
from an offset fault. The critical observations are identi-
fied by our algorithm are indicated in bold in Figure 4, and
we can indeed demonstrate that they suffice to prove the di-
agnosis.

Firstly, notice that IT240 reads a current of 16.3A at time
1500ms, after having read 6.3A prior. This value, according
to the system specification and model, is clearly abnormal.
Secondly, as the value of IT240 at time 2000ms is differ-
ent from the former one, we deduce that the problem can-
not be that IT240 is stuck at 16.3A. Finally, the only reason
(at least, according to our model) for a larger than expected
current is that the battery is compensating for a lower than
expected voltage; however voltage sensor E235 claims that
the voltage is normal (24V is expected upstream of the in-
verter).

Obviously E235 could be faulty, but that would imply
at least one other fault, as a fault from E235 does not ex-
plain the abnormal observation from IT240. Such a diagno-
sis would have a cardinality of two or more, making it less
preferred to the cardinality one diagnosis.

7 Related Work

The notion of reducing the number of observations in di-
agnosis problems has been widely studied but with differ-
ent motivations from this work. Previous work in general
aims at reducing the overall cost of observations, which is
incurred in multiple different ways: (1) the system must be
designed to allow for appropriate and useful observations,
(2) sensors must be integrated and additionally powered, (3)
observations must be collected, etc.
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Figure 3: Schematic for ADAPT-lite

sensors @1000 { E235 = 24.4, E240 = 24.4, E242 = 24.3, E261 = 24.4, E265 = 120.8, E267

= 120.9, ESH244A = true, ESH260A = true, ESH275 = true, ISH236 = true, ISH262 = true,

ISH266 = true, IT240 = 6.3, IT261 = 6.3, IT267 = 0.94, ST265 = 60.4, ST516 = 900.0, TE228

= 71.6, TE229 = 72.8 };

sensors @1500 { E235 = 24.4, E240 = 24.4, E242 = 24.3, E261 = 24.3, E265 = 120.8, E267

= 120.9, ESH244A = true, ESH260A = true, ESH275 = true, ISH236 = true, ISH262 = true,

ISH266 = true, IT240 = 16.3, IT261 = 6.3, IT267 = 0.97, ST265 = 60.4, ST516 = 900.0,

TE228 = 71.6, TE229 = 72.8 };

sensors @2000 { E235 = 24.4, E240 = 24.4, E242 = 24.3, E261 = 24.3, E265 = 120.8, E267

= 120.9, ESH244A = true, ESH260A = true, ESH275 = true, ISH236 = true, ISH262 = true,

ISH266 = true, IT240 = 16.4, IT261 = 6.3, IT267 = 0.94, ST265 = 60.4, ST516 = 900.0,

TE228 = 71.6, TE229 = 72.7 };

Figure 4: Example of Observations - Sensor IT240 offset

Optimal diagnosability is concerned with minimizing the
number of sensors (or their total cost) while ensuring diag-
nosability [5] before any observations are considered. The
solution to an optimal diagnosability problem works for ev-
ery possible evolution of the system, as opposed to our
approach, which is specific to the current evolution and
only seeks to provide an explanation for the current circum-
stances.

Sequential diagnosis [6], and its event-based variant [7],
focuses on the problem of deciding which observation
should be collected next in order to improve the precision of
diagnosis (sequential diagnosis being generally performed
in a context where faults have already been detected albeit
not identified yet, while the dynamic observers are used be-
fore detection).

Both problems, as well as the one presented in this paper,
aim at minimizing a cost associated with the observations
(optimize the resources required to collect or to process the
observations). The important difference between these tasks
is that sequential diagnosis is performed before the final di-
agnoses are available.

In order to minimize the expected cost, sequential diag-
nosers use a conservative strategy, which selects the obser-
vations that split the set of candidates as evenly as possible.
In contrast, an optimal choice for critical observations are
the observations that isolate the set of final diagnoses from
the non-diagnosis ones without regard to the size (or their
associated probability mass) of these sets. As a consequence
we doubt that the presented theory of critical observations
can be used to improve the problem of sequential diagnosis.

An additional consequence is that the critical observa-
tions solver will automatically dismiss observations that
might provide information but do not in the current situa-
tion. For instance, assume that the system presented as the
running example includes an imperfect sensor that reports
the status of bus x2: either N , F , or U (unknown). If the

observation is U , this information will not appear in the crit-
ical observations.

8 Conclusion

In this paper we presented an approach to provide an oper-
ator involved in a diagnosis loop with a manageable subset
of observations with the intent of providing a better under-
standing and appreciation of the results returned by the di-
agnosis procedure. The intended application of this work is
in contexts where the sheer volume of observations is over-
whelming, making it difficult for a human operator to verify
the validity of the given diagnosis. We made the assumption
that the optimality of the solution is tied to the conciseness
of the explanation. It is clear then, that the most concise
explanation is strictly preferred, which we formalised with
respect to the notion of minimality.

This definition of optimality could be further refined. For
instance, one might consider that a better solution would be
one that involves reasoning about the smallest number of
variables (or components) or that involves the simplest rules
(for instance, avoiding complex numerical operations). In
the ADAPT-lite example from the previous section, it seems
more natural to include the observation of IT261 rather than
that of E235 because the disagreement between the two ob-
servations of the current flow is more obvious than the in-
consistency between the current flow and the voltage.

Additionally, it might be interesting to optimize the cri-
terion of confidentiality by abstracting away details: in a
power network context, one could report that a specified
household has been consuming electricity during the day
rather than reporting any specifics that may compromise
consumer confidentiality, such as the precise time of con-
sumption and the amount consumed.

Further research could be done in regards to the more
practical question of computing the critical set of observa-
tions fast. One possibility would be to analyze the solving of



Mod∧Obs∧∇ in order to extract the specific observations
used to prove inconsistency as part of the consistency check.
However, whilst this set of observations may not necessar-
ily be minimal, it has the potential to provide a good first
approximation.

A last interesting extension is in considering event-based
observations as opposed to state-based observations. Event-
based observations bring an additional subtlety that is not a
factor in state-based observations — specifically, there is a
difference between not observing an event and ignoring an
event that has been observed. For instance, the repeated ob-
servations that a window is being closed without an observa-
tion of it ever being opening is symptomatic of a problem.
The critical information may therefore include that certain
observations were not made. Identifying and classifying
this information is therefore crucial in extracting the critical
information from a large flow of alarms when considering
event-based observations.
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