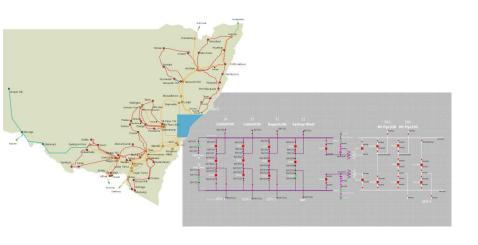


Alarm Processing with Model-Based Diagnosis of Discrete Event Systems

Andreas Bauer – Adi Botea – **Alban Grastien**P@trik Haslum – Jussi Rintanen


NICTA

Outline

- Alarm Processing of Electricity Networks
- 2 Related Works
- Model-Based Alarm Processing
- 4 Experiments

Example: the TransGrid Network

Example (cont.): the Alarm Log

Extract from Incident July 2nd 2009

```
2/07/2009 10:47:27 BAYSWTR PS 023 NO4 GEN UNIT STATUS OFF
2/07/2009 10:47:27 BAYSWTR PS 023 NO4 GEN UNIT STATUS OFF
2/07/2009 10:47:27 BAYSWTR330 330 SYD WEST 322 CB --OPENED--
2/07/2009 10:47:27 BAYSWTR330 330 NO4 BY/CUP 5042 CB -- OPENED --
2/07/2009 10:47:27 BAYSWTR330 330 NO4 GEN TX 5242 CB -- OPENED --
2/07/2009 10:47:27 BAYSWTR330 CONTROL SYSTEM LAN FAULT ALARM
2/07/2009 10:47:27 BAYSWTR PS 023 NO4 GEN 2242 CB --OPENED--
2/07/2009 10:47:28 LIDDELL330 330 BAYSWTR330 332 CB -- OPENED --
2/07/2009 10:47:28 LIDDELL330 330 BAYSWTR330 342 CB -- OPENED--
2/07/2009 10:47:28 LIDDELL330 330 NO2 BY/CUP 5022 CB --OPENED--
2/07/2009 10:47:28 LIDDELL330 330 NO3 BY/CUP 5032 CB -- OPENED --
2/07/2009 10:47:28 WANG330 FAULT RECORDER OPERATED ALARM
2/07/2009 10:47:28 BAYSWTR330 330 MAIN BUS BAR KV Limit 5 Low
2/07/2009 10:47:28 BAYSWTR330 330 GEN BUS BAR KV Limit 5 Low
2/07/2009 10:47:28 WANG330 BU SUBSTATION MISC EQUIPMENT FAIL ALARM
2/07/2009 10:47:28 SYD WEST 330 BAYSWTR330 322B B CB -- OPENED --
2/07/2009 10:47:28 SYD WEST 330 BAYSWTR330 322A A CB -- OPENED --
2/07/2009 10:47:28 MT PIPR330 330 FAULT RECORDER OPERATED ALARM
2/07/2009 10:47:28 ERARING500 SUBSTATION MISC EQUIP FAIL ALARM
2/07/2009 10:47:28 MT PIPR330 500 B BUS BAR KV Limit 3 Low
2/07/2009 10:47:28 BAYSWTR330 330 NO3 BY/CUP 5032 CB -- OPENED --
2/07/2009 10:47:28 BAYSWTR330 330 NO3 GEN TX 5232 CB --OPENED--
2/07/2009 10:47:28 BAYSWTR330 330 REGENTVILE 312 CB --OPENED--
2/07/2009 10:47:28 BAYSWTR PS 023 NO3 GEN 2232 CB -- OPENED --
2/07/2009 10:47:28 BAYSWTR PS 023 NO3 GEN MW1 Entered zero zone
2/07/2009 10:47:28 BAYSWTR PS 023 NO1 GEN RUNBACK URGNT ALARM
```

. . .

Problem Definition

What is Alarm Filtering

Organise the flow of alarms in order to

- Stress important alarms and hide redundant ones
- Show on-going / finished incidents

What is Alarm Filtering Not

Diagnosis

- The operator wants the alarms, not a diagnosis
- The model is not accurate enough (or an accurate model would be too hard to reason on)

NICTA

Outline

- Alarm Processing of Electricity Networks
- 2 Related Works
- Model-Based Alarm Processing
- 4 Experiments

Patterns

Definition

Set of alarms, possibly with time constraint, that are symptomatic of a certain fault

Pattern-Based Filtering

With each pattern, is associated the filtering rules: when the pattern is recognised, the rules are applied

Issues

- Generation
- Completeness
- Intertwined behaviours

Model-Based Approaches

Model

Causality rules of form:

$$\operatorname{alarm}_1 \wedge \cdots \wedge \operatorname{alarm}_k \to \operatorname{alarm}'$$

Model-Based Filtering

The causality rules are used to determine the *root cause* alarm(s) and ignore the other alarms

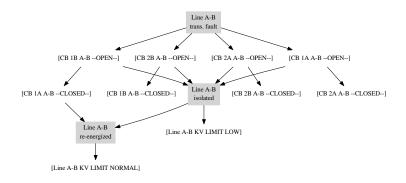
Issues

- Alarms are symptoms, not root causes.
- Context-based causality

NICTA

Outline

- Alarm Processing of Electricity Networks
- 2 Related Works
- Model-Based Alarm Processing
- 4 Experiments


Principle

Model-Based Filtering

- Build a causal model of the system, including internal (unobservable) events
- Perform a diagnosis to "explain" the alarms
- Use the diagnosis to determine which and how alarms are related

Example

Representation of an explanatory trajectory

Framed events = unobservable events Arrows represent causality dependency

How to Compute a Trajectory

Objectives

- Correctness:
 - it is ok not to link related alarms
 - it is not ok to link unrelated alarms
- Fast response (rule of thumb: a dozen seconds)

Model

- Timed discrete event systems
- Weak fault model
- "Unexplained event" = a (weakly modeled) fault or an alarm

How to Compute a Trajectory (cont.)

"Diagnoser"

- Searches the trajectory that minimises the number of unexplained events
- Implemented in SAT

Filtering Techniques

Clustering

ightarrow regroup the events that are logically related

Filtering Techniques

Root cause

→ select the unexplained event(s) in each cluster

Filtering Techniques

Live Alarms

A set of alarms is live if the situation described by these alarms has not been resolved

→ test whether the state at the end of the cluster is nominal

NICTA

Outline

- Alarm Processing of Electricity Networks
- 2 Related Works
- Model-Based Alarm Processing
- 4 Experiments

Experimental Data (1/2)

Observations

- Incident of July 2nd, 2009
- 2,246 alarms (731 left)
- Sliced into one-minute diagnosis windows and uninterrupted diagnosis windows (→ 129 problems)

Experimental Data (2/2)

System

- 5,000 components
 but we compute the cone of influence (2 to 104 components)
- Timed automata

Experiments

Diagnoser

- SAT solver using 6 unobservable transitions between two observations
- Permissive (?) implementation of time constraints
- Searches for scenarios with 0, 1, 2, etc., unexplained events

Results

Runtime (for finding the best explanation)

- Only 16 problems not solved on time
- ...but they are the problems where the filtering is useful

Possible Improvements

- Identify independent subsystems
- Change the model
- Compute any explanation

Conclusion

Summary

- Filtering using model-based diagnosis
- Provides useful information