

Conflict-Based Diagnosis of Discrete-Event Systems

Alban Grastien — Patrik Haslum — Sylvie Thiébaux

Contribution

We define a conflict-based diagnosis theory for discrete event systems

- Compatible with the existing conflict-based diagnosis for circuits (Reiter theory)
- Efficient (solve many unsolved problems)
- Applicable to more frameworks (e.g. hybrid systems)

- Example
- 2 Diagnosis
- Consistency-Based Diagnosis
- 4 Validation

Example: System

TransGrid Network

Example: Observation

Alarm Log (extract)

Date System Time E	vent Text		
2/07/2009 10:47:27	BAYSWTR PS	023 NO4 GEN UNIT STATUS	OFF
2/07/2009 10:47:27	BAYSWTR330	330 SYD WEST 322 CB	OPENED
2/07/2009 10:47:27	BAYSWTR330	330 NO4 BY/CUP 5042 CB	OPENED
2/07/2009 10:47:27	BAYSWTR330	330 NO4 GEN TX 5242 CB	OPENED
2/07/2009 10:47:27	BAYSWTR330	CONTROL SYSTEM LAN FAULT	ALARM
2/07/2009 10:47:27	BAYSWTR PS	023 NO4 GEN 2242 CB	OPENED
2/07/2009 10:47:28	LIDDELL330	330 BAYSWTR330 332 CB	OPENED
2/07/2009 10:47:28	LIDDELL330	330 BAYSWTR330 342 CB	OPENED
2/07/2009 10:47:28	LIDDELL330	330 NO2 BY/CUP 5022 CB	OPENED
		330 NO3 BY/CUP 5032 CB	OPENED
2/07/2009 10:47:28	WANG330	FAULT RECORDER OPERATED	ALARM
2/07/2009 10:47:28	BAYSWTR330	330 MAIN BUS BAR KV	Limit 5 Low
2/07/2009 10:47:28		330 GEN BUS BAR KV	Limit 5 Low
		BU SUBSTATION MISC EQUIPMENT FAIL	ALARM
2/07/2009 10:47:28		330 BAYSWTR330 322B B CB	OPENED
2/07/2009 10:47:28		330 BAYSWTR330 322A A CB	OPENED
2/07/2009 10:47:28		330 FAULT RECORDER OPERATED	ALARM
2/07/2009 10:47:28		SUBSTATION MISC EQUIP FAIL	ALARM
2/07/2009 10:47:28		500 B BUS BAR KV	Limit 3 Low
2/07/2009 10:47:28		330 NO3 BY/CUP 5032 CB	OPENED
2/07/2009 10:47:28		330 NO3 GEN TX 5232 CB	OPENED
2/07/2009 10:47:28		330 REGENTVILE 312 CB	OPENED
2/07/2009 10:47:28	BAYSWTR PS	023 NO3 GEN 2232 CB	OPENED

- Example
- 2 Diagnosis
- Consistency-Based Diagnosis
- 4 Validation

Model-Based Diagnosis

O • NICTA

Static Systems

- **Model** Formula Φ_M involving *Ab* literals
- Observation Formula Φ_O
- Possible behaviours $\Phi_M \wedge \Phi_O$
- Diagnosis Projection on the Ab literals: ∃X.Φ_M ∧ Φ_O
 where X are the non Ab literals, rewriten in prime
 implicants

$$Ab(Mul1) \lor Ab(Add1) \lor (Ab(Mul2) \land Ab(Mul3)) \lor (Ab(Mul2) \land Ab(Add2))$$

Model-Based Diagnosis

AUTOMATON

SEQUENCE OF OBSERVATIONS

- **Model** Language \mathcal{L}_M involving Σ_f events
- **Observation** Language \mathcal{L}_O involving only observable events Σ_O
- Possible behaviours $\mathcal{L}_M \cap \mathcal{L}_O$
- **Diagnosis** Projection on the Σ_f events and minimisation (removes non minimal words)

$$\mathcal{L}_{\Delta} = \textit{Minimisation}(\textit{Proj}_{\Sigma_f}(\mathcal{L}_M \cap \mathcal{L}_O))$$

Model-Based Diagnosis

General Definition

Static Systems

- Model Formula Φ_M
- Observation Formula Φ_O
- Possible behaviours $\Phi_M \wedge \Phi_O$
- Diagnosis Projection on the Ab literal + prime implicants

Discrete Event Systems

- Model Language \mathcal{L}_M
- Observation Language \mathcal{L}_O
- Possible behaviours $\mathcal{L}_M \cap \mathcal{L}_O$
- **Diagnosis** Projection on the Σ_f events and minimisation

Boum!

Static Systems

The size of the formula is exponential in the number of state variables

 \rightarrow Compilation Map (Darwiche et al.), BDD, sd-DNNF, Cone-based diagnoser, etc.

Boum!

Static Systems

The size of the formula is exponential in the number of state variables

 \rightarrow Compilation Map (Darwiche et al.), BDD, sd-DNNF, Cone-based diagnoser, etc.

Boum!

DES

The size of the automata is exponential in the number of components

 \rightarrow Decentralised / Distributed approach, Junction Trees, Specialised diagnosers, etc.

- Example
- 2 Diagnosis
- Consistency-Based Diagnosis
- 4 Validation

Check carefully-chosen hypotheses until the diagnosis is found

- → We do not compute all diagnosis candidates
- → We compute only one representative of each candidate
- $\rightarrow\,$ For each test, we derive useful information from the hypothesis at hand

Testing if a Hypothesis is a Candidate

Static Systems

- Φ_h is a conjunct defined on all Ab literals
- h is a candidate iff

$$\Phi_M, \Phi_O, \Phi_h \not\models \bot$$

Discrete Event Systems

- $\mathcal{L}_h = \{\omega_h\}$ is a finite word defined on Σ_f
- h is a candidate iff

$$\mathcal{L}_{M} \cap \mathcal{L}_{O} \cap \mathcal{L}_{h} \neq \emptyset$$

Preferred-First Strategy

Successors of hypothesis h is all its children

Preferred-First Strategy

But ignore successors that are covered by existing hypotheses

Preferred-First Strategy

Preferred-First Strategy

Also: termination issue (not discussed here)

Principle

 If hypothesis h is not a candidate, the output is not very informative

A conflict is a generalisation of a test failure:

Why did the test fail?

How to use conflicts:

- An earlier conflict may discard a new hypothesis
- Conflicts can reduce the set of successors

Static System

Testing if no component is abnormal:

$$\begin{array}{c} \Phi_M, \Phi_O, \\ (\neg \textit{Ab}(\textit{Mul1}) \land \neg \textit{Ab}(\textit{Mul2}) \land \neg \textit{Ab}(\textit{Mul3}) & \models \bot \\ \land \neg \textit{Ab}(\textit{Add1}) \land \neg \textit{Ab}(\textit{Add2})) \end{array}$$

O • NICTA

Static System

Testing if no component is abnormal:

Static System

Testing if no component is abnormal:

$$\Phi_M, \Phi_O,$$
 $\neg Ab(Mul1), \neg Ab(Mul2), \models \bot$
 $\neg Ab(Add1)$

Static System

Testing if no component is abnormal:

Three successors:

- Only component Mul1 is abnormal
- Only component Mul2 is abnormal
- Only component Add1 is abnormal

Static System

Testing if no component is abnormal:

Three successors:

- Only component Mul1 is abnormal
- Only component Mul2 is abnormal
- Only component Add1 is abnormal

If hypothesis *h* is not a candidate, then

$$\mathcal{L}_{M} \cap \mathcal{L}_{O} \cap \mathcal{L}_{h} = \emptyset \tag{1}$$

If hypothesis *h* is not a candidate, then

$$\mathcal{L}_{M} \cap \mathcal{L}_{O} \cap \mathcal{L}_{h} = \emptyset \tag{1}$$

We reformulate $\mathcal{L}_h = \mathcal{L}_0 \cap \cdots \cap \mathcal{L}_k$

$$\mathcal{L}_{M} \cap \mathcal{L}_{O} \cap \mathcal{L}_{0} \cap \cdots \cap \mathcal{L}_{k} = \emptyset$$
 (2)

If hypothesis *h* is not a candidate, then

$$\mathcal{L}_{M} \cap \mathcal{L}_{O} \cap \mathcal{L}_{h} = \emptyset \tag{1}$$

We reformulate $\mathcal{L}_h = \mathcal{L}_0 \cap \cdots \cap \mathcal{L}_k$

$$\mathcal{L}_{M} \cap \mathcal{L}_{O} \cap \mathcal{L}_{0} \cap \cdots \cap \mathcal{L}_{k} = \emptyset$$
 (2)

For some $C = \{C_0, \dots, C_{k'}\} \subseteq \{0, \dots, k\}$ (we prefer C as small as possible),

$$\mathcal{L}_{M} \cap \mathcal{L}_{O} \cap \mathcal{L}_{C_{0}} \cap \cdots \cap \mathcal{L}_{C_{k'}} = \emptyset$$

If hypothesis *h* is not a candidate, then

$$\mathcal{L}_{M} \cap \mathcal{L}_{O} \cap \mathcal{L}_{h} = \emptyset \tag{1}$$

We reformulate $\mathcal{L}_h = \mathcal{L}_0 \cap \cdots \cap \mathcal{L}_k$

$$\mathcal{L}_{M} \cap \mathcal{L}_{O} \cap \mathcal{L}_{0} \cap \cdots \cap \mathcal{L}_{k} = \emptyset$$
 (2)

For some $C = \{C_0, \dots, C_{k'}\} \subseteq \{0, \dots, k\}$ (we prefer C as small as possible),

$$\mathcal{L}_{M} \cap \mathcal{L}_{O} \cap \mathcal{L}_{C_{0}} \cap \cdots \cap \mathcal{L}_{C_{k'}} = \emptyset$$

$$C =$$
conflicts

Discrete Event System

$$\Sigma_{\mathit{f}} = \{\mathit{a}, \mathit{b}, \mathit{c}\} \text{ and } \mathcal{L}_{\mathit{h}} = \{\mathit{a}\}$$

Discrete Event System

$$\Sigma_f=\{a,b,c\}$$
 and $\mathcal{L}_h=\{a\}$
$$\{a\}=\mathcal{L}_0\cap\mathcal{L}_1\cap\mathcal{L}_2\cap\mathcal{L}_3\cap\mathcal{L}_4\cap\mathcal{L}_5$$

- $\mathcal{L}_0 = \Sigma_f^* a \Sigma_f^*$
- $\bullet \ \mathcal{L}_1 = (\Sigma_f{}^\star) \setminus (\Sigma_f{}^\star a \Sigma_f{}^\star a \Sigma_f{}^\star)$
- $\mathcal{L}_2 = (\Sigma_f^*) \setminus (\Sigma_f^* a \Sigma_f^* b \Sigma_f^*)$
- $\mathcal{L}_3 = (\Sigma_f^*) \setminus (\Sigma_f^* a \Sigma_f^* c \Sigma_f^*)$
- $\mathcal{L}_4 = (\Sigma_f^*) \setminus (\Sigma_f^* b \Sigma_f^* a \Sigma_f^*)$
- $\bullet \ \mathcal{L}_5 = (\Sigma_f^*) \setminus (\Sigma_f^* c \Sigma_f^* a \Sigma_f^*)$

Discrete Event System

$$\Sigma_f=\{a,b,c\}$$
 and $\mathcal{L}_h=\{a\}$
$$\{a\}=\mathcal{L}_0\cap\mathcal{L}_1\cap\mathcal{L}_2\cap\mathcal{L}_3\cap\mathcal{L}_4\cap\mathcal{L}_5$$

- $\mathcal{L}_0 = \Sigma_f^* a \Sigma_f^*$
- $\mathcal{L}_1 = (\Sigma_f^*) \setminus (\Sigma_f^* a \Sigma_f^* a \Sigma_f^*)$
- $\bullet \ \mathcal{L}_3 = (\Sigma_f^*) \setminus (\Sigma_f^* a \Sigma_f^* c \Sigma_f^*)$
- $\mathcal{L}_4 = (\Sigma_f^*) \setminus (\Sigma_f^* b \Sigma_f^* a \Sigma_f^*)$

Conflict: $\{\mathcal{L}_0, \mathcal{L}_1, \mathcal{L}_3, \mathcal{L}_4\}$ Successors: aa, ac, and ba

Discrete Event System

$$\Sigma_f=\{a,b,c\}$$
 and $\mathcal{L}_h=\{a\}$
$$\{a\}=\mathcal{L}_0\cap\mathcal{L}_1\cap\mathcal{L}_2\cap\mathcal{L}_3\cap\mathcal{L}_4\cap\mathcal{L}_5$$

- $\mathcal{L}_0 = \Sigma_f^* a \Sigma_f^*$
- $\bullet \ \mathcal{L}_1 = (\Sigma_f^*) \setminus (\Sigma_f^* a \Sigma_f^* a \Sigma_f^*)$
- $\bullet \ \mathcal{L}_3 = (\Sigma_f{}^\star) \setminus (\Sigma_f{}^\star a \Sigma_f{}^\star c \Sigma_f{}^\star)$
- $\bullet \ \mathcal{L}_4 = (\Sigma_f^*) \setminus (\Sigma_f^* {}_{\!b} \Sigma_f^* {}_{\!a} \Sigma_f^*)$

Conflict: $\{\mathcal{L}_0, \mathcal{L}_1, \mathcal{L}_3, \mathcal{L}_4\}$ Successors: aa, ac, and ba

More Complex Example

NICTA

Discrete Event System

$$\Sigma_f = \{a, b, c\}$$
 and $\mathcal{L}_h = \{ab\}$

Conflict:

- $\bullet \ \mathcal{L}_i = (\Sigma_f^*) \setminus (\Sigma_f^* b \Sigma_f^* b \Sigma_f^*)$
- $\bullet \ \mathcal{L}_j = (\Sigma_f^*) \setminus (\Sigma_f^* c \Sigma_f^*)$

Successors: abb, bab, abc, acb, and cab

More Complex Example

NICTA

Discrete Event System

$$\Sigma_f = \{a, b, c\} \text{ and } \mathcal{L}_h = \{ab\}$$

Conflict:

- $\mathcal{L}_i = (\Sigma_f^*) \setminus (\Sigma_f^* b \Sigma_f^* b \Sigma_f^*)$
- $\bullet \ \mathcal{L}_j = (\Sigma_f^*) \setminus (\Sigma_f^* {}_{\mathcal{C}} \Sigma_f^*)$

Successors: abb, bab, abc, acb, and cab

Technically...

- Given a hypothesis h, define properties
 - $p_{\text{desc}}(h)$: property satisfied by all hypotheses $h' \succeq h$
 - $p_{\text{dese}}(h)$: property satisfied by all hypotheses $h' \succeq h$
- A possible decomposition of {h}:
 - \bullet $p_{\rm desc}(h)$
 - $\forall h' \in \text{children}(h), \ p_{\text{dese}}(h')$
- $C = \{p_1, \dots, p_k\}$ is a conflict for h iff
 - $\forall h' : p_{desc}(h') \in C \Rightarrow h' \leq h$
 - $\forall h' : p_{\text{dese}}(h') \in C \Rightarrow h' \not\preceq h$
- Successors of conflict $C = \{p_1, \dots, p_k\}$
 - Let $\Omega = \{h' \mid p_{\text{dese}}(h') \in C\}$
 - Successors: $\bigcup_{h' \in \Omega} (h \otimes h')$

- Example
- 2 Diagnosis
- Consistency-Based Diagnosis
- 4 Validation

Experiments

Diagnosis Problem

- Electricity transmission network
- Alarm log
- Hypothesis: a sequence of "unexplained" events

Problem Instances

Metrics

- Number of components: 3 to 105
- Component model:
 - 8 to 1,024 (more often) states
 - 44 to 92,800 transitions
- Number of minimal candidates: up to 27 and more

Results

	N	Μ	С	Α	PF	JT
window-250	1	0	2	3	0.3	1.5
chunk-004	1	2	3	3	0.8	2
chunk-056	1	4	4	7	1.7	2.6
window-618	1	0	6	2	0.7	-time-
window-527	2	1	11	8	2.7	-time-
window-347	4	9	32	13	106.1	-time-
window-336	?	?	58	49	-time-	-time-
window-335	?	?	67	66	-time-	-time-
chunk-089	?	?	105	146	-time-	-memory-
window-410	?	?	19	13	-time-	5
window-409	?	?	22	14	-time-	5.3
Nb proble	ms s	solve	d (/129	9)	116	35

N: number of minimal candidates,

M: maximum number of faults in a minimal candidate,

C: number of components in the problem,

A: number of alarms.

PF: runtime for PF running SAT, and

JT: runtime for automata-based approach (in seconds)

Conclusion

Contribution

A generalised perspective of conflicts for non trivial hypothesis search space.

Extensions

- Application to hybrid systems
- Conflicts = explanations