
Computing Superior Counter-Examples
for Conformant Planning:

Xiaodi Zhang, Alban Grastien, Enrico Scala

Australian National University, February 8, 2020

Alban Grastien | alban.grastien@data61.csiro.au | Superb 1/18
1/18

1

Conformant Planning — Motivation

Problem:
• Conformant planning = find a plan that leads to a given goal
• Uncertainty in the initial state and no observability
• No uncertainty on the action effect (deterministic conformant

planning)

Motivation:
• Useful for robots with little processing capability and in

dangerous environments
• Target language from probabilistic conformant planning and

epistemic planning
• The ideas will apply for more sophisticated problems

Alban Grastien | alban.grastien@data61.csiro.au | Superb 2/18
2/18

1

Conformant Planning — Example
Dispose (simplified):
• Three items 1 to 3, four locations A to D

• Initial location of each item unknown
• Goal: drop all items in another location T

• Actions:
◦ Go-to: moves the robot
◦ Pick-up: grabs the item if it is where the robot is
◦ Drop: drops the item if the robot is holding it

• One solution:
◦ go-to A, pick-up 1, pick-up 2, pick-up 3
◦ go-to B, pick-up 1, pick-up 2, pick-up 3
◦ go-to C, pick-up 1, pick-up 2, pick-up 3
◦ go-to D, pick-up 1, pick-up 2, pick-up 3
◦ go-to T , drop 1, drop 2, drop 3

Alban Grastien | alban.grastien@data61.csiro.au | Superb 3/18
3/18

1

Conformant Planner: gcpces

Assuming the problem is “easy” if the set of initial states is small

• B := { }
• repeat
◦ π := compute-plan(B)
◦ if no π

• return unsolvable
◦ q := compute-counter-example(π)
◦ if no q

• return π

◦ B := B ∪ {q}

Alban Grastien | alban.grastien@data61.csiro.au | Superb 4/18
4/18

1

gcpces— Example

Illustration on Dispose :

)

counter-ex. 1 2 3 4
Init loc of item 1 A B C D
Init loc of item 2 A B D C
Init loc of item 3 A B C D

What happens in practice :(

counter-ex. 1 2 3 4 5 6 7 8 9 10
Init loc of item 1 A B C D A A A A A A
Init loc of item 2 A A A A B C D A A A
Init loc of item 3 A A A A A A A B C D

Alban Grastien | alban.grastien@data61.csiro.au | Superb 5/18
5/18

1

gcpces— Example

Illustration on Dispose :)

counter-ex. 1 2 3 4
Init loc of item 1 A B C D
Init loc of item 2 A B D C
Init loc of item 3 A B C D

What happens in practice :(

counter-ex. 1 2 3 4 5 6 7 8 9 10
Init loc of item 1 A B C D A A A A A A
Init loc of item 2 A A A A B C D A A A
Init loc of item 3 A A A A A A A B C D

Alban Grastien | alban.grastien@data61.csiro.au | Superb 5/18
5/18

1

Our Goal

We want to minimise the number of counter-examples that are
generated by gcpces

1. Fewer iterations
→ faster (?) gcpces

2. Smaller set of counter-examples
→ better “explanation”

3. More diverse counter-examples
→ less “biased” plans when using non-admissible heuristics

Question:
• How do we know that q′ is a better counter-example than q?

Alban Grastien | alban.grastien@data61.csiro.au | Superb 6/18
6/18

1

Superiority: Intuition

• Let B1 ⊂ B2 ⊂ . . . be the sequence of samples built by
gcpces

• Then: Π(P [B1]) ⊃ Π(P [B2]) ⊃ · · · ⊇ Π(P)

• gcpces terminates when Π(P [B]) = Π(P) (sometimes before)

→ To accelerate convergence, we want to minimise Π(P [Bi]) at
each i

Alban Grastien | alban.grastien@data61.csiro.au | Superb 7/18
7/18

1

Superiority: Intuition (continued)

Properties we are looking for: if q′ is superior to q (given B)

1. Π(B ∪ {q}) ⊇ Π(B ∪ {q′}) ← so q′ is better now

2. for all subset B′ of initial states:
Π(B ∪ {q} ∪ B′) ⊇ Π(B ∪ {q′} ∪ B′) ← so q′ will be better

I.e., q′ is always better than q

Alban Grastien | alban.grastien@data61.csiro.au | Superb 8/18
8/18

1

Known Notions: Tags
(Palacios & Geffner, 2009; Albore, Palacios, & Geffner, 2010)
• A plan is valid iff
◦ all its actions’ preconditions are satisfied when they are applied
◦ and the goal is satisfied at the end
→ validity condition

• The context of a validity condition ϕ is the list of all variables
that ϕ depends on (including through other actions)
Example in dispose:
◦ Context of disposed(i) = { disposed(i), holding(i), location(i) }

• A tag t is a possible initial assignment of the variables in the
context of a validity condition

Alban Grastien | alban.grastien@data61.csiro.au | Superb 9/18
9/18

1

Known Notions: Tags (continued)

• An initial state q exhibits a number of tags: Tags(q)

• It is possible to associate each tag t with a set of plans Π(t)
such that:

• The set of valid plans of problem P is:

Π(P) =
⋂

t∈T ags(q), q∈I

Π(t)

Alban Grastien | alban.grastien@data61.csiro.au | Superb 10/18
10/18

1

Tag-Based Superiority (definition)

Remember:

Tags(B) ⊆ Tags(B′)⇒ Π(P [B]) ⊇ Π(P [B′])

• Let B ⊆ I be a sample
• Let q and q′ be two counter-examples
• q′ is superior to q (given B) if:

Tags(B ∪ {q}) ⊂ Tags(B ∪ {q′})

Alban Grastien | alban.grastien@data61.csiro.au | Superb 11/18
11/18

1

Computing Superior Counter-Examples

Let q be the current counter-example and B the sample
Let C1, . . . , Ck be the contexts
Let ti,1, . . . , ti,p be the tags of Ci in B
Let ti be the tag of q for Ci

Let j be such that ti 6∈ {ti,1, . . . , ti,p} is a new tag iff i ≤ j

Then

Initial_State ∧
∧

i∈{1,...,j}
ti ∧ ¬

 ∧
i∈{j+1,...,k}

∨
`∈{1,...,p}

ti,`


is satisfiable iff there is a counter-example superior to q

Alban Grastien | alban.grastien@data61.csiro.au | Superb 12/18
12/18

1

Experiments (setup)

Planners:

• gcpces (using z3 and ff)

• new CPCES: Superb (using z3 and ff)

• T1, a planner based on Conformant FF that performs very
well when the contexts include only one unknown variable

Alban Grastien | alban.grastien@data61.csiro.au | Superb 13/18
13/18

1

Experiments (expectations)

Definitions: a problem instance is
• vertical if all contexts include exactly one variable initially

unknown (“width” = 1)
• horizontal if all contexts are identical

We expect (“>” means “faster”):
• Vertical & horizontal: trivial problems
• Vertical & non-horizontal: T1> Superb> gcpces
• Non-vertical & horizontal: gcpces= Superb> T1
• Non-vertical & non-horizontal: Superb> gcpces> T1

Alban Grastien | alban.grastien@data61.csiro.au | Superb 14/18
14/18

1

Experiments (benchmarks)

(crudely)
• Vertical & non-horizontal: Dispose, Coins, Bomb, uts

• Non-vertical & horizontal: BlockWorld, RaosKey,
EmptyGrid, WallGrid, Dispose-One,
LookAndGrab

• Non-vertical & non-horizontal: (new domain!)
MAWallGrid

Alban Grastien | alban.grastien@data61.csiro.au | Superb 15/18
15/18

1

Experiments (results)

Coverage Plan Quality Planning Time

Domain C S T1 C S T1 C S T1

LookAndGrab(18) 18 18 15 42 42 34 22 36 117
BlockWorld(3) 3 3 2 13 13 13 0.7 0.8 0.2
UTS(15) 13 13 11 36 36 41 3 4 0.2
RaosKeyS(2) 2 2 1 16 16 21 0.6 1.2 0.5
Dispose-One(10) 5 5 4 62 68 79 30 67 377
wallgrid(18) 18 18 4 18 18 18 0.7 0.9 0.1

emptygrid(4) 4 4 4 18 18 18 0.6 1.3 0.1
Bomb(9) 7 9 9 106 106 101 96 4 0.1
Coins(9) 8 8 9 88 86 149 3 3 0.6
dispose(11) 4 6 8 184 184 212 580 259 6

Alban Grastien | alban.grastien@data61.csiro.au | Superb 16/18
16/18

1

Experiments (results, continued)

mawallgrid

Planning Time Iterations Sampling Time

Pro C S C S C S T1Time

4_4_2 1.43 1.17 10 7 0.41 0.42 0.1
4_4_3 20.02 10.34 19 11 0.86 1.09 0.3
6_6_2 4.29 4.25 13 12 0.7 1.14 0.1
6_6_3 1037.74 904.75 14 14 1.08 1.74 4.9
8_8_2 124.14 77.75 29 25 2.74 3.31 TO
8_8_3 TO TO NA NA NA NA TO

10_10_2 874.49 1876.62 40 50 4.11 9.75 TO
10_10_3 TO TO NA NA NA NA TO
11_11_2 2287.07 1606.3 43 38 6.09 9.3 TO
11_11_3 TO TO NA NA NA NA TO

Alban Grastien | alban.grastien@data61.csiro.au | Superb 17/18
17/18

1

Conclusion

• We identify that some counter-examples are more informative
than others in the context of gcpces

• We show one characterisation of this relation (“superiority”)
• We show how to compute maximally-superior

counter-examples
• We show experimentally the benefits of this approach
More broadly:
• We combine a technique that is oblivious of the structure

(gcpces) with a technique that leverages on the structure
(superiority)

• Can we characterise informativeness more precisely?
• Can we import this type of solution in other problems?

Alban Grastien | alban.grastien@data61.csiro.au | Superb 18/18
18/18

