Computing Superior Counter-Examples
for Conformant Planning:

Xiaodi Zhang, , Enrico Scala
S
> @

Australian National University, February 8, 2020

alban.grastien@data61.csiro.au |

Australian

Naons. Conformant Planning — Motivation

University

Problem:
e Conformant planning = find a plan that leads to a given goal
e Uncertainty in the initial state and no observability

* No uncertainty on the action effect (deterministic conformant
planning)

Motivation:

e Useful for robots with little processing capability and in
dangerous environments

e Target language from probabilistic conformant planning and
epistemic planning

e The ideas will apply for more sophisticated problems

2 /
. 18
Alban Grastien | Superb y

Australian

Dispose (simplified):

Nators. Conformant Planning — Example

University

Three items 1 to 3, four locations A to D
Initial location of each item unknown

Goal: drop all items in another location T’
Actions:

o Go-to: moves the robot

o Pick-up: grabs the item if it is where the robot is
o Drop: drops the item if the robot is holding it
One solution:

o go-to A, pick-up 1, pick-up 2, pick-up 3

go-to B, pick-up 1, pick-up 2, pick-up 3

go-to C, pick-up 1, pick-up 2, pick-up 3

go-to D, pick-up 1, pick-up 2, pick-up 3

go-to T', drop 1, drop 2, drop 3

(¢]
o
o
o

3 /
. 18
Alban Grastien | Superb y

Australian

ot Conformant Planner: ¢CPCES

University

Assuming the problem is “easy” if the set of initial states is small

e B:={}
e repeat

o m := compute-plan(B)
oifnom
e return unsolvable

o q := compute-counter-example(r)
o if nogq

e return

o B:=BU{q}

4 /
. 18
Alban Grastien | Superb y

Australian

Natonar. g CPCES— Example

University

[llustration on Dispose :

counter-ex. ‘ 1
Init loc of item 1 | A
Init loc of item 2 | A
Init loc of item 3 | A

W W W~
N O NOlw
O n g+

5 /
. 18
Alban Grastien | Superb y

Nawona. ¢CPCES— Example

Gz University

lllustration on Dispose :)

counter-ex. 1 2 3 4
Init locofitem1 | A B C D
Init locofitem2 | A B D C
Init locofitem3 | A B C D
What happens in practice :(
counterex. |1 2 3 4 5 6 7 8 9 10
Init locofitem1 |A B C D A A A A A A
Init locofitem2 | A A A A B C D A A A
Init locofitem3|A A A A A A A B C D
Alban Grastien | Superb 5/18‘

oo Our Goal

8 University

We want to minimise the number of counter-examples that are
generated by gCPCES

1. Fewer iterations
— faster (?) gCPCES

2. Smaller set of counter-examples
— better “explanation”

3. More diverse counter-examples
— less “biased” plans when using non-admissible heuristics

Question:

e How do we know that ¢ is a better counter-example than ¢?

6 /
. 18
Alban Grastien | Superb y

Australian

Natons” SUperiority: Intuition

University

e Let By C By C ... be the sequence of samples built by
gCPCES

e Then: H(P[Bl]) D) H(P[BQ]) D2 H(P)
® gCPCES terminates when II(P[B]) = II(P) (sometimes before)

— To accelerate convergence, we want to minimise I1(P[B;]) at
each ¢

7 /
. 18
Alban Grastien | Superb y

Australian

Neors” Superiority: Intuition (continued)

University

Properties we are looking for: if ¢’ is superior to ¢ (given B)

II(BU{q}) DII(BU{{}) < so ¢ is better now

2. for all subset B’ of initial states:
I(BU{qgtuUB) DI(BU{d}UB') < soq will be better

l.e., ¢ is always better than ¢

8 /
. 18
Alban Grastien | Superb y

Australian

natona Known Notions: Tags

University

(Palacios & Geffner, 2009; Albore, Palacios, & Geffner, 2010)
e A plan is valid iff

o all its actions’ preconditions are satisfied when they are applied
o and the goal is satisfied at the end
— validity condition

e The context of a validity condition ¢ is the list of all variables
that ¢ depends on (including through other actions)
Example in dispose:
o Context of disposed(i) = { disposed(i), holding(), location(z) }

e A tag t is a possible initial assignment of the variables in the
context of a validity condition

9 /
. 18
Alban Grastien | Superb y

Australian

Nsom Known Notions: Tags (continued)

University

e An initial state ¢ exhibits a number of tags: T'ags(q)

e |t is possible to associate each tag ¢ with a set of plans II(¢)
such that:

e The set of valid plans of problem P is:

neE) = N 0w

teTags(q), g€l

10 /
Alban Grastien | Superb 18‘

ustralian

ow 1ag-Based Superiority (definition)

niversity

Remember:

Tags(B) C Tags(B') = I(P[B]) 2 II(P[B'])

e Let BC I be asample
e Let ¢ and ¢’ be two counter-examples
e ¢ is superior to ¢ (given B) if:

Tags(BU{q}) C Tags(BU{q'})

11 /
Alban Grastien | Superb 18‘

Alban Grastien | Superb

Let ¢ be the current counter-example and B the sample
Let C,...,C} be the contexts

Let t;1,...,t;, be the tags of C; in B

Let ¢; be the tag of ¢ for C;

Let j be such that t; & {t;1,...,%;,} is a new tag iff i < j

Then

i€{1,....5} ie{j+1,...,k} €e{l,...p}

Initial_State N /\ ti A —|(/\ \/ ti,z)

is satisfiable iff there is a counter-example superior to ¢

2
/18‘

Australian

\os Experiments (setup)

University

Planners:
® gCPCES (using z3 and ff)

* new CPCES: SUPERB (using z3 and ff)

e T1, a planner based on Conformant FF that performs very
well when the contexts include only one unknown variable

13 /
Alban Grastien | Superb 18‘

Australian

Naow Experiments (expectations)

y University

Definitions: a problem instance is

e vertical if all contexts include exactly one variable initially
unknown (“width” = 1)

e horizontal if all contexts are identical

We expect (“>" means “faster”):

Vertical & horizontal: trivial problems

Vertical & non-horizontal: T'1> SUPERB> gCPCES

Non-vertical & horizontal: gcPCES= SUPERB> T'1

Non-vertical & non-horizontal: SUPERB> gCPCES> T'1

14 /
Alban Grastien | Superb 18‘

N Experiments (benchmarks)

~y University

(crudely)

e Vertical & non-horizontal: Di1sPOSE, COINS, BOMB, UTS

e Non-vertical & horizontal: BLOCKWORLD, RAOSKEY,
EMPTYGRID, WALLGRID, DISPOSE-ONE,
LOoOKANDGRAB

* Non-vertical & non-horizontal: (new domain!)
MAWALLGRID

15 /
Alban Grastien | Superb 18‘

Australian

Nos” Experiments (results)

y University

Coverage Plan Quality Planning Time
Domain C S T1 | C S Ti | C S T1
T T
LooKANDGRAB(18) 18 18 15 42 42 34 22 36 117
BLOCKWORLD(3) 3 3 2 13 13 13 07 0.8 0.2
UTS(15) 13 13 11 36 36 41 3 4 02
RA0SKEYS(2) 2 2 1 16 16 21 0.6 1.2 0.5
Dispose-ONE(10) 5 5 4 62 68 79 30 67 377
WALLGRID(18) 18 18 4 18 18 8 07 09 01
EMPTYGRID(4) 4 4 4 18 18 18 06 13 0.1
BowmB(9) 7 9 9 106 106 101 96 4 01
CoIns(9) 8 8 9 88 86 149 3 3 0.6
DISPOSE(11) 4 6 8 184 184 212 580 259 6

16 /
Alban Grastien | Superb 18‘

Australian

Nsow Experiments (results, continued)

y University

MAWALLGRID
Planning Time Iterations ~ Sampling Time
Pro C S C S C S Tl1Time
4_4_2 1.43 1.17 10 7 041 0.42 0.1
4_4_3 20.02 10.34 19 11 0.86 1.09 0.3
6_6_2 4.29 4.25 13 12 0.7 1.14 0.1
6_6_3 1037.74 904.75 14 14 1.08 1.74 4.9
8_8_2 124.14 77.75 29 25 274 331 TO
8_8_3 TO TO NA NA NA NA TO
10_10_2 874.49 1876.62 40 50 4.11 9.75 TO
10_10_3 TO TO NA NA NA NA TO
11_11_2 | 2287.07 1606.3 43 38 6.09 9.3 TO
11_11_3 TO TO NA NA NA NA TO

17 /
Alban Grastien | Superb 18‘

Australian

Naroaa” Conclusion

niversity

e We identify that some counter-examples are more informative
than others in the context of gCPCES

* We show one characterisation of this relation (“superiority”)

e We show how to compute maximally-superior
counter-examples

e We show experimentally the benefits of this approach

More broadly:

e We combine a technique that is oblivious of the structure
(gCPCES) with a technique that leverages on the structure
(superiority)

e Can we characterise informativeness more precisely?

e Can we import this type of solution in other problems?

18 /
Alban Grastien | Superb 18‘

