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Abstract

Diagnosability is the property that a Discrete-Event
System (DES) exhibits if every fault can be de-
tected and isolated within a finite number of (ob-
servable) events that have taken place after its oc-
currence. In the literature, diagnosability of DESs
relies on the availability of a certain observation,
which equals the sequence of observable events that
have taken place in the DES. But can diagnosabil-
ity be achieved even if the observation is uncertain?
The present paper provides an answer to this ques-
tion when the observation is temporally or logically
uncertain, that is, when the order of the observed
events or their (discrete) values are partially un-
known. The original notion of compound observ-
able event enables a smooth extension of both the
definition of DES diagnosability in the literature
and the twin plant method to check such a property.
The intuition is to deal with a compound observable
event the same way as with a single event. In case a
DES is diagnosable even if its observation is uncer-
tain, the diagnosis task can be performed (without
any loss in the ability to identify every fault) al-
though the available measuring equipment cannot
get a certain observation.

1 Introduction
A DES is a conceptual model of a dynamical system, where
the system behavior is described by transitions over a finite
set of states and each transition is associated with an event
out of a finite set of events [Cassandras and Lafortune, 2008].
Model-based diagnosis of DESs is a task that takes as input
the DES model of a (natural or man-made) system along with
a relevant observation and produces as output a diagnosis,
i.e. some pieces of information explaining whether what has
been observed is consistent either with a normal behavior or
an abnormal one. There are several notions of diagnosis of
DESs in the literature featuring different levels of abstrac-
tion. According to a common notion, the diagnosis of a DES
is a set of candidates, each candidate being a set of faults,
where a fault is an undesired state transition. The definition
of a candidate requires that the faults included in a candidate

are consistent with both the DES model and the given obser-
vation. However, distinct candidates may bring conflicting
information. This is the case, for instance, when according
to a candidate the system is free of faults while according
to another it is affected by faults. A DES that is repeatedly
diagnosed while it is being monitored (that is, a new set of
candidates is produced every time a new observable event is
processed) is diagnosable if such ambiguity can be removed
once a finite sequence of observable events have taken place.
Diagnosability is very desirable and system designers often
want to enforce it.

DES diagnosability was introduced by the diagnoser ap-
proach [Sampath et al., 1995], where a necessary and suf-
ficient condition is proposed to check diagnosability based
on the construction of a so-called diagnoser. The problem
of deciding diagnosability was then proved to be polynomial
by using the twin plant method [Jiang et al., 2001]. Similar
approaches to diagnosability checking can be found in [Yoo
and Lafortune, 2002; Cimatti et al., 2003]. Recently, there
has been an increasing interest in applying DES techniques
to the diagnosability analysis of hybrid systems [Bayoudh
and Travé-Massuyès, 2014]. Existing works are focused on
how to verify the intrinsic diagnosability of a DES and as-
sume that candidates are computed by an exact diagnostic
algorithm that takes as input a completely certain observa-
tion. Exceptions include diagnosability under imperfect con-
ditions for modular structures [Contant et al., 2006], decen-
tralised analysis [Sengupta and Tripakis, 2004], and approx-
imate diagnosers [Su and Grastien, 2014]. As remarked in
this latest paper, the diagnosability property can be exhib-
ited even when some incomplete or approximate diagnostic
algorithms are used, i.e. algorithms that do not perform a
complete search of the behavioral space of the DES. How-
ever, this work still relies on a completely certain observation
while in the real world the observation may be uncertain, as
remarked by some contributions on diagnosis of DESs [Lam-
perti and Zanella, 2002; Grastien et al., 2007]. In a broader
perspective, one can see that the ability to remove ambiguities
in candidates depends not only on the DES and the diagnostic
algorithm at hand but also on the available observations.

This paper investigates whether the ability to disambiguate
DES candidates, i.e. the diagnosability property, holds for a
diagnosable system with uncertain observations. The uncer-
tainty is measured by a parameter, which allows to study the
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level of noise that can affect the observation without impact-
ing the performance of diagnosis. The remaining of this paper
is organized as follows. The next section presents the relevant
literature review on DES diagnosability. Section 3 introduces
uncertain observations along with the notions of compound
observable event and uncertainty measure. Section 4 extends
the original definition of DES diagnosability to the case when
an uncertain observation is considered. It also extends the
twin plant method so as to check diagnosability of DESs with
uncertain observations. Finally, Section 5 draws conclusions
and hints at directions for future research.

2 Background
A DES diagnosis problem consists in a DES D and a (finite)
observation O, the latter representing what has been observed
while D was running during a time interval of interest.

2.1 Discrete Event Systems
A (partially observable) DES D is a 4-tuple (⌃, L, obs,flt),
where ⌃ is the finite set of events that can take place in the
system; L ✓ ⌃

⇤ is the behavior space, which is a prefix-
closed and live, i.e. deadlock-free, language that models all
(and only) the possible sequences of events, or traces, that
can take place in the system. Function obs associates each
trace ⌧ with an observation obs(⌧) 2 ⌃

⇤
o

and is defined as the
projection of ⌧ on the subset ⌃

o

✓ ⌃ of observable events,
i.e. obs(⌧) is a copy of ⌧ , where all non-observable events
have been removed. The length of the sequence of events
in obs(⌧) is denoted |obs(⌧)|. obs(L) is the prefix-closed
and live observable language relevant to L 1. The set of un-
observable faulty events, or faults, is denoted as ⌃

f

, where
⌃

f

✓ ⌃ \ ⌃

o

. Function flt associates each trace ⌧ with the
sequence flt(⌧) 2 ⌃

⇤
f

of faulty events that appear in the trace
itself.

Language L of DES D = (⌃, L, obs,flt) can be repre-
sented by a finite automaton (FA) G = (X,⌃, �, x0), called
the behavioral model, where X is the set of states and � ✓
X ⇥ ⌃ ⇥ X is the set of state transitions. Each x 2 X rep-
resents a state that D can be in and each triple (x,�, x0

) 2 �
represents a possible state change. State x0 2 X is the ini-
tial one, i.e. the state of the system at the moment when we
have started to observe its evolution. A path in automaton
G is a sequence of transitions starting from the initial state,
concisely represented as x0

�1�! x1
�2�! · · · �

n��! x
n

, where
n � 1. A trace is a projection of a path on ⌃, e.g. �1. · · · .�n

.
Figure 1 displays the behavioral model G of a DES D that
will be used as a running example throughout this paper. Such
a model encompasses one faulty event f , another unobserv-
able event u, and seven observable events (a–e, g, and h). A
possible path is 0 h�! 8

g�! 9

e�! 3

f�! 4

c�! 4, corresponding
to the trace h. g. e. f. c, where . is the concatenation operator.

Given a diagnosis problem (D,O), a diagnosis candidate
is a pair (x,') 2 X ⇥ 2

⌃
f , where x represents the state that

system D has reached by a path generating O and ' repre-
sents the set of faults of this path. The diagnosis is the set of

1Note that the fact that L is assumed to be live does not im-
ply that obs(L) is live. However, following the diagnoser approach
[Sampath et al., 1995], we also assume that obs(L) is live.
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Figure 1: A ||//2-diagnosable DES model that is not ||//3-
diagnosable (and it is not ||#2-diagnosable)

all the candidates relevant to the diagnosis problem (D,O).
The diagnosis relevant to our sample system D in Figure 1
and observation O = h. g. e. c is {(4, {f})}. Such a diagnosis
consists of just one candidate, meaning that, once observation
O has been perceived, the state of D is certainly 4 and fault f
has necessarily occurred.

2.2 Diagnosability
Following [Sampath et al., 1995], a DES D exhibits the di-
agnosability property as far as a fault f 2 ⌃

f

is concerned
if the occurrence of such a fault can always be detected and
isolated without any ambiguity once a finite sequence of ob-
servable events has been recorded. Given an observation, an
exact diagnostic algorithm is able to draw all the sets of faults
relevant to all the traces consistent with such an observation.
If, for whichever path that has preceded the occurrence of the
fault, and for whichever sequence of transitions (generating
k observable events) that has followed it, all the traces that
are consistent with such an observation include the fault, then
such a fault is certain (and it is said to be diagnosable) as it
belongs to the intersection of all the candidate sets of faults.
The system is said to be diagnosable if all its faults are diag-
nosable. We denote L

f

= (⌃

⇤f⌃⇤
) \ L the set of traces that

include fault f and ¯L
f

= (⌃

⇤f)\L the set of traces that end
with fault f .
Definition 1 (Diagnosability [Sampath et al., 1995]). Given
a DES D = (⌃, L, obs,flt) whose set of faults is ⌃

f

✓ ⌃, a
fault f 2 ⌃

f

is diagnosable if

8⌧1 2 ¯L
f

, 9k 2 N, 8⌧2 : ⌧1. ⌧2 2 L, |obs(⌧2)| � k )
(8⌧ 2 L), (obs(⌧) = obs(⌧1. ⌧2) ) (⌧ 2 L

f

)).

System D is diagnosable if all its faults are diagnosable.
DES D of our example in Figure 1 is diagnosable with

k = 1 since the occurrence of fault f is precisely detected
once the occurrence of observable event c has been perceived
immediately after having perceived either b or h. g. e. One
can appreciate that such a notion of diagnosability relies on
the function obs , which provides the sequence of observable
events that have occurred in the system during its evolution,
where such a sequence reflects the chronological order of the
occurrence of events within a trace. The above definition
of diagnosability implicitly assumes that, if a DES follows a
trace u, the observation O processed by the diagnostic engine
equals obs(u). An observation like this is certain.
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3 Temporal and Logical Uncertainty of
Observations

In the literature, diagnosability has so far been confined to
certain observations. However, observation are uncertain in
many applications. We present two types of uncertainties, i.e.
temporal and logical, and for each of them, a measure of how
uncertain the observation is. These measures are by no means
the only ones possible.

3.1 Temporally Uncertain Observations

h g e c

h g

e

c

Figure 2: Certain (top) and temporally uncertain (bottom) ob-
servations

In observation O = h. g. e. c used above, the occurrence
order of the observable events is known. This observation
is depicted in the top graph of Figure 2, where the order is
represented by the arrows between observed events. Implicit
arrows, e.g. from h to e, are not displayed. We say that
the observation is temporally certain. However, the tempo-
ral order of the observable events that have occurred within
the DES is not always known, in particular when they occur
in a short time span. The bottom graph of Figure 2 shows
a temporally uncertain observation O0, where the order be-
tween observable events g and e is unknown. Since we do
not know which sequence, i.e. either h. g. e. c or h. e. g. c,
actually occurred, an exact diagnostic algorithm has to con-
sider both of them. The pair of observable events e and g
can altogether be considered as a temporally compound event
e//g, which cumulatively represents both sequences e. g and
g. e. We can describe the uncertain observation as a sequence
O0

= h. e//g. c.
Definition 2 (Temporally compound observable event). A
temporally compound observable event of level ` (with ` � 1)
is a multiset of ` reciprocally temporally unrelated instances
of observable events. When ` > 1, not all the ` instances are
identical. A temporally compound event of level 1 is a single
observable event.

We use
✓✓
⌃

o

k

◆◆
and

✓✓
⌃

o

k

◆◆
to denote the collection of

multisets of ⌃
o

of cardinality k and of cardinality k or less,

respectively. Notice that
✓✓

⌃

o

k

◆◆
=

S
ik

✓✓
⌃

o

i

◆◆
. Although

a temporally compound event is univocally identified by writ-
ing the values of all the instances that it includes, indepen-
dently of their order, using // as a separator, we put such val-
ues in alphabetical order in this paper.
Definition 3 (Temporal uncertainty level). A temporally un-
certain observation is a sequence of temporally compound ob-

servable events. The temporal uncertainty level of a tempo-
rally uncertain observation O is the maximum level of the
compound observable events that O includes.

The lowest temporal uncertainty level of an observation is
1 corresponding to a certain observation. The temporal uncer-
tainty level of the observation in the bottom graph of Figure 2
instead is 2, since events e and g are reciprocally temporally
unrelated. Notice that the temporally uncertain observations
defined above do not encompass all the temporally uncer-
tain observations as defined in [Lamperti and Zanella, 2002].
However, the class of temporally uncertain observation we
are addressing is meaningful. If an exact diagnostic algorithm
is adopted to diagnose a DES in a monitoring context, the
diagnosis output is monotonic [Lamperti and Zanella, 2011]
for whichever temporally uncertain observation that is a se-
quence of temporally compound events, provided that a new
set of candidates is output only after all the observable events
in a temporally compound event have been processed.

3.2 Logically Uncertain Observations
A temporally uncertain observation is a certain observation,
where some temporal constraints have been relaxed. Simi-
larly, a logically uncertain observation is a logical relaxation
of a certain one. The so-called logical content [Lamperti and
Zanella, 2002] of an observed event is its (discrete) value. If
such a value is not known with certainty, the relevant obser-
vation is logically uncertain.

e|h g "|e c

Figure 3: Logically uncertain observation

Figure 3 shows a logically uncertain observation, where
the logical uncertainty comes from the fact that i) the first
observed event is not known with certainty, i.e. it could be
either e or h, and ii) whether the third observed event (e) ac-
tually occurred is not certain, which is represented by ". Since
we do not know which sequence (either h. g. e. c or h. g. c or
e. g. e. c or e. g. c) actually occurred, an exact diagnostic al-
gorithm has to consider all of them.

Because logically uncertain observations may include ",
we use the notation ⌃

o+ = ⌃

o

[ {"}. We define a logi-
cally compound observable event as a set of events belonging
to ⌃

o+. The degree of this compound event, tantamount to
the level of a temporally compound observable event, is here
defined as the maximal distance according to a specified dis-
tance matrix (increased by 1 for normalization) between any
pair of events included in the compound event.
Definition 4 (Distance matrix and logically compound ob-
servable event). The distance matrix M is a map that as-
sociates any pair in ⌃

o

⇥ ⌃

o+ with a (possibly infinite)
non-negative integer while respecting these constraints, i.e.
8(e1, e2) 2 ⌃

o

⇥ ⌃

o+, M(e1, e2) = 0 if e1 = e2, M(e1, e2)
> 0, if e1 6= e2, M(e2, e1) = M(e1, e2), if e2 6= ". A logi-
cally compound observable event o of degree d (with d � 1) is
a non-empty subset of elements from ⌃

o+, that is not the sin-
gleton {"}, such that d = max{M(e1, e2) | {e1, e2} ✓ o)}
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+ 1. A logically compound event of degree 1 is a single ob-
servable event.

Given the system D in Figure 1, we assume that observ-
able events b and d are hard to distinguish. We also assume
that a, e, and h are less difficult to distinguish, and some-
times it is difficult to find out whether what has been per-
ceived is either pure noise (that is, no observable event has
occurred in the DES) or observable event e. This can be mod-
eled by M(b, d) = 1; M(a, e) = M(a, h) = M(e, h) = 2;
M(e, ") = 3; and M(·) = 1 for any other pair of distinct
elements.

We use 2⌃o+,d and 2

⌃
o+,d to denote the collection of sub-

sets of ⌃
o+, where each subset represents a logically com-

pound observable event of degree d, and d or less, respec-
tively. Notice that 2⌃o+,d

=

S
id

2

⌃
o+,i. We use the sym-

bol # as a separator to represent the logically compound ob-
servable event, e.g. e#h. Although a logically compound
event is univocally identified by writing all the values that are
included, independently of their order, we put such values in
an order in this paper so that " precedes any other event and
all the other events are in alphabetical order.
Definition 5 (Logical uncertainty degree). A logically uncer-
tain observation is a sequence of logically compound observ-
able events. The logical uncertainty degree of a logically un-
certain observation is the maximum degree of the logically
compound events that are included.

The logical uncertainty degree of observation
e#h. g. "#e. c depicted in Figure 3 is 4 because the
distance between " and e is 3.

3.3 Unifying Uncertainty Representations
The examples presented in this paper use either pure temporal
uncertainty or pure logical uncertainty. However, a combina-
tion of both uncertainties could be adopted. To make the next
definitions independent of the specific type of the considered
uncertainty and of its measure (since several measures can be
envisaged for the same uncertainty type), we introduce the
extension of an observation. Such a notion encapsulates both
the specific kind of uncertainty and its value according to a
specific measure.
Definition 6 (Extension). Given a type of uncertainty k, the
value m of a specific measure of this uncertainty, and a cer-
tain observation O, the extension ||O||km of the observation
is the set of certain and uncertain observations that O could
produce according to the given uncertainty type and up to the
given uncertainty measure, where O 2 ||O||km.

We now talk about km as the uncertainty that can af-
fect the observation produced by the system. For in-
stance, we denote the extension up to temporal uncer-
tainty of level ` as ||O||//` and denote the extension up
to logical uncertainty of degree d as ||O||#d. In our
example, given the trace ⌧ whose certain observation is
obs(⌧) = h. g. e. c, the extension of such an observation
to the second temporal uncertainty level is ||obs(⌧)||//2 =

{h. g. e. c, h. g. c//e, h. e//g. c, g//h. e. c, g//h. c//e}, while
its extension to the third logical uncertainty degree
based on the distance matrix provided in Section 3.2 is

||obs(⌧)||#3
= {x. g. y. c}, which is a set including six-

teen sequences, where x 2 {h, a#h, e#h, a#e#h} and
y 2 {e, a#e, e#h, a#e#h}. Notice that ||obs(⌧)||//1 =

||obs(⌧)||#1
= {h. g. e. c}, i.e. these extensions give a cer-

tain observation. This is a general property, i.e. for any trace
⌧ , ||obs(⌧)||//1 = ||obs(⌧)||#1

= {obs(⌧)} since both ||//1
and ||#1 comprise no uncertainty. Given an uncertain obser-
vation Ou, the fact Ou 2 ||O1||km \ ||O2||km for certain ob-
servations O1 and O2 means that observable behavior O1 can
be mistaken for observable behavior O2 if the observation is
affected by uncertainty km.

4 Diagnosability with Uncertain Observations
This section proposes a definition of diagnosability with an
observation affected by a (generic) uncertainty km. Accord-
ing to this generalized definition, a faulty behavior should al-
ways eventually produce an observation that cannot be mis-
taken for an observation produced by a nominal behavior.
Definition 7 (Diagnosability under uncertainty). Given a
DES D = (⌃, L, obs,flt) with a set of faults ⌃

f

✓ ⌃ and
an uncertainty km, a fault f 2 ⌃

f

is km-diagnosable if

8⌧1 2 ¯L
f

, 9k 2 N, 8⌧2 : ⌧1. ⌧2 2 L, |obs(⌧2)| � k )
(8⌧ 2 L),

⇣
||obs(⌧1. ⌧2)||km \ ||obs(⌧)||km 6= ; ) (⌧ 2 L

f

)

⌘
.

System D is km-diagnosable if every fault f 2 ⌃

f

is km-
diagnosable.

Comparing Definition 1 with Definition 7, it is easy to
see that the latter one is a generalization of the former since
||O||km is a singleton when km comprises no uncertainty.
System D in Figure 1 is ||//2-diagnosable. Indeed, fault f
is identified by observing either b. c⇤ or e. c⇤; changing the
order of two consecutive observed events does not eliminate
the fact that b will be observed; a temporally uncertain ob-
servation with level `  2 will not modify the order between
h and e. However, the system is not ||//3-diagnosable since
observation e//g//h. c⇤ cannot be precisely diagnosed as it is
relevant both to a normal and a faulty trace.

Given the distance matrix provided in Section 3.2, let us
now consider the degree of logical uncertainty as 2. Hence,
only events whose distance value between them is up to 1
need to be considered, i.e. the only uncertainty lies in event
b, which may be confused with d. If the logically uncertain
observation b#d. c⇤ is perceived, the diagnosis task cannot
find out whether fault f has occurred or not, which proves
that D is not ||#2-diagnosable.

Notice how the definition of diagnosability is well-behaved
w.r.t. increasing uncertainty. If uncertainty ||00 is stronger
than ||0, i.e. ||O||00 ◆ ||O||0 for any certain observation O,
then ||00-diagnosability implies ||0-diagnosability. Given a se-
quence ||1, ||2, . . . of increasingly stronger uncertainties, the
maximum index i such that the system is ||i-diagnosable (or
0, if the DES is not diagnosable even for certain observations,
or +1, if there does not exist any upper bound for i) defines
the robustness of the system w.r.t. uncertainty. Since tempo-
ral uncertainty is increasingly stronger for increasing values
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of the uncertainty level and logical uncertainty is increasingly
stronger for increasing values of the uncertainty degree (for
any given distance matrix), we can conclude that the sample
DES D is not ||//`-diagnosable for any ` > 2 and it is not
||#d-diagnosable for any d > 1.

4.1 Diagnosability and Temporal Uncertainty
The most popular approach to diagnosability analysis is the
twin plant method [Jiang et al., 2001], which synchronizes
two completely observable FAs, called verifiers, to search for
non-diagnosable faulty behaviors. We now present the ||//`-
verifier, which is the verifier that incorporates temporal un-
certainty.

Definition 8 (||//`-Verifier). Let D = (⌃, L, obs,flt) be a
DES, where ⌃

o

✓ ⌃ and ⌃

f

✓ ⌃ are the sets of observable
and faulty events, respectively. Let G = (X,⌃, �, x0) be the
FA generating L. The ||//`-verifier relevant to a fault f 2 ⌃

f

is the FA G//`

= (X//`,⌃//`, �//`, x
//`

0 ) defined as follows:

• X//`

= X ⇥ {N,F} and x
//`

0 = (x0, N);

• ⌃

//`

=

✓✓
⌃

o

`

◆◆
; and

• �//` = {((x,�), w, (x0,�0
)) 2 X//` ⇥ ⌃

//`

o

⇥ X//` |
9x �1�! . . .

�

n��! x0. w 2 ||obs(�1. · · · .�n

)||//` ^
(�0

= N , � = N ^ f 62 {�1, . . . ,�n

})}.

The size of the ||//`-verifier relevant to a fault and the com-
putational complexity of its construction is O(|X|2|⌃//`|) =
O(|X|2|⌃

o

|`).
Once G//` has been built, it has to be synchronized with

itself, which results in the twin plant. A state of the twin
plant is ambiguous if it matches the pattern ((x,N), (x0, F ))

or ((x, F ), (x0, N)). Diagnosability holds if no loop includes
ambiguous states, as stated in Theorem 1. Notice that if a
state in a loop is ambiguous, then all the states in the same
loop are ambiguous.
Theorem 1. Given a DES D whose behavior is represented
by FA G = (X,⌃, �, x0) and the ||//`-verifier G//`, fault f
in D is ||//`-diagnosable iff G//` ⌦ G//` contains no loop of
ambiguous states.

Proof outline: The proof is similar to the corresponding one
in the classical twin plant approach [Jiang et al., 2001]. A
loop of ambiguous states proves that there is an infinite am-
biguous path in the twin plant. By construction, an infinite
ambiguous path in the twin plant betrays the existence of two
infinite behaviors of the DES, a nominal one and a faulty one,
that can indefinitely generate the same uncertain observation,
which shows that the finite delay k in Definition 7 after which
the fault can be diagnosed does not exist. ⇤

The complexity of the whole method to check the ||//`-
diagnosability of a fault is O(|X|4|⌃

o

|`).
The ||//2-verifier for our sample DES D in Figure 1 is de-

picted in Figure 4. Instead of displaying all the transitions
having the same source and target nodes, just one is shown,
which is labeled by all the events triggering these transitions,
where + is a separator.

4.2 Diagnosability and Logical Uncertainty
Logical uncertainty requires a more involved verifier. The
main issue stems from the fact that an unbounded number of
observation fragments such as "#e could be generated with-
out any transition actually taking place in the system; we
shall call them interrupting fragments. However, the condi-
tion specified in the definition of diagnosability only applies
to system paths of non-trivial length, i.e. the k parameter
in the definition. Therefore, sequences of interrupting frag-
ments, regardless how long, need to be ignored as they do not
represent arbitrary long paths in the system.

The purpose of the twin plant is to exhibit an infinite faulty
path on the system, every prefix of which generates an obser-
vation similar to that of a non-faulty path. The idea of the ver-
ifier is to create copies hx, b, x0i of transition hx, a, x0i when-
ever M(a, b) + 1  d. As usual, the states are actually aug-
mented with a label N or F that records whether a fault has
occurred. In order to account for interrupting fragments, we
also define interruption transitions �3 in Definition 9, which
are loops labeled by ". The semantics of such transitions is
that nothing happened on the system but the sensors wrongly
detected an observable event.

However, diagnosability cannot be checked with such ver-
ifier because the twin plant may now include cycles of inter-
ruption transitions. In order to prevent the inclusion of those
cycles, we record the state flag F if an observable event has
just occurred; otherwise, we record F 0. We then search for
cycles that contain at least one F state (cf. Theorem 2).
Definition 9 (||#d-Verifier). Let D = (⌃, L, obs,flt) be a
DES, where ⌃

o

✓ ⌃ and ⌃

f

✓ ⌃ are the sets of observ-
able and faulty events, respectively. Let G = (X,⌃, �, x0)

be the FA generating L. Let M be the distance matrix. The
||#d-verifier relevant to a fault f 2 ⌃

f

is the FA G#d

=

(X#d,⌃#d, �#d, x#d

0 ) defined as follows:

• X#d

= X ⇥ {N,F, F 0} and x#d

0 = (x0, N);

• ⌃

#d

= ⌃

o

[ {"}; and
• �#d

= �1 [ �2 [ �3, where
– �1 = {((x,�), e, (x0,�0

)) 2 X#d ⇥ ⌃

#d ⇥X#d |
9e0 2 ⌃

o

. (x, e0, x0
) 2 � ^ M(e, e0) + 1  d ^

(�0 2 {N,F}) ^ (�0
= N , � = N)} ;

– �2 = {((x,�), ", (x0,�0
)) 2 X#d ⇥ ⌃

#d ⇥X#d |
9e0 2 ⌃ \ ⌃

o

. (x, e0, x0
) 2 � ^ (�0 2 {N,F 0}) ^

(�0
= N , � = N ^ e 6= f)} ;

– �3 = {((x,�), ", (x,�0
)) 2 X#d ⇥ ⌃

#d ⇥X#d |
(�0 2 {N,F 0}) ^ (�0

= N , � = N)}.
The set of transitions of the verifier is partitioned into �1,

the transitions corresponding to an observable event; �2, the
transitions corresponding to a non-observable event; and �3,
the interruption transitions.

The size of the ||#d-verifier relevant to a fault is
O(|X|2|⌃

o

|).
Theorem 2. Given a DES D whose behavior is represented
by FA G = (X,⌃, �, x0), a distance matrix M , and the ||#d-
verifier G#d, fault f in D is ||#d-diagnosable iff G#d⌦G#d

contains no loop with an ambiguous state, i.e. a state
((x,N), (x0, F )) or ((x, F ), (x0, N)).
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0, N1, N2, N 3, N 4, F

6, N7, N 8, N 9, N

c

c

da+ a � c b c

e

g

h+ c � h h

g

e

d+ a � d+ c � d

e � gg � h

g � h

b � c

e � g
c � e

Figure 4: ||//2-verifier for the example of Figure 1

Proof outline: The proof is similar to that of Theorem 1.
The only difference is that it suffices for a loop to include
an ambiguous state (instead of including ambiguous states
only) and conclude that an infinite behavior after the fault is
possible along which the diagnosis task cannot discriminate
whether the fault has occurred. ⇤

The complexity of the whole method to check the ||#d-
diagnosability of a fault is O(|X|4|⌃

o

|).

Although checking diagnosability when the observation is
both temporally and logically uncertain is beyond the scope
of this paper, we briefly mention it here. If we want to find out
whether a fault is (||#d and ||//`)-diagnosable, we first trans-
form G into G# = (X,⌃, �#, x0), where �# is initially set
to �, i.e. 8e1 2 ⌃

o

, 8e2 2 ⌃

o+ such that M(e1, e2)  d� 1,
8(x, e1, x0

) 2 �, we add (x, e2, x
0
) to �#. Then, we apply the

method described in Section 4.1 to G#. If the relevant twin
plant does not include any loop of ambiguous states, we can
conclude that the fault is diagnosable for whichever observa-
tion that mixes ||#d uncertainty and ||//` uncertainty.

5 Conclusions
This paper investigates how uncertainty in observations can
affect the diagnosability of a DES, i.e. the ability of detect-
ing a fault without any ambiguity within a finite number of
observable events after the fault has occurred. The analysis is
carried out in a scenario, where the considered DES is diag-
nosable according to the original definition of DES diagnos-
ability in the literature (that is, it is diagnosable given a certain
observation) and the diagnostic algorithm is exact. In partic-
ular, the paper deals with the above topic in the context of
event-based approaches to fault modeling [Jéron et al., 2006]
and a relaxation of either the temporal constraints or the log-
ical constraints between observed events is considered.

In the former case, the observation becomes a sequence
of compound temporal events. If the maximum cardinality
of the considered temporally compound events is i (which
is called the temporal uncertainty level of the observation),
this means that, after i (single) observable events have been
recorded, we may be unable to find out in which temporal
order they were produced by the DES. This is the case, for
instance, when the observable events are conveyed to the ob-
server through distinct channels, having distinct clocks or de-
lays, and the synchronization error of these clocks (or the—
possibly varying—length of these delays) is such that at most

i events can be received without the observer being able to
disclose their reciprocal temporal order.

In the latter case, the observation becomes a sequence of
compound logical events. If the degree of logical uncertainty
is i, each observable event occurred in the DES may be con-
fused with some other observable event(s) or even with pure
noise, provided that its distance from them is less than i.
This is the case, for instance, when the observable events are
conveyed to the observer through channels affected by noise.
Hence, both temporal and logical relaxations are quite mean-
ingful and representative of real world situations.

This paper provides a definition of DES diagnosability that
extends the original definition [Sampath et al., 1995] in the
literature, as well as a method to check whether the newly
defined property holds for a given DES, that extends the orig-
inal twin plant method [Jiang et al., 2001] considering tem-
poral and logical uncertainty. If a DES is diagnosable even
if the observation has a temporal uncertainty level of value
i > 1 or a logical uncertainty degree i > 1, the diagnosis task
can be performed without any loss in the ability to disam-
biguate candidates although the available measuring equip-
ment cannot get a certain observation. The higher the uncer-
tainty level/degree that still guarantees diagnosability, the less
expensive the needed measuring equipment and its design.

Future research can follow two orthogonal directions, one
focused on the distribution and the other on the extension of
the proposed conceptual framework. Such a framework is
currently based on a global model of the DES at hand and on
its monolithic processing. Instead, the model can be compo-
sitional and a distributed processing method can be adopted.
As to the second research direction, the new definition of DES
diagnosability and the proposed method to check it could be
adapted to state-based approaches of fault modeling. In ad-
dition, all kinds of temporal uncertainty should be addressed
including the relaxations of temporal constraints that are not
sequences of temporally compound events but bring to un-
certain observations. A further challenge is to define diag-
nosability in the frame of temporal uncertainty, logical uncer-
tainty, and approximate diagnostic algorithms altogether.
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