Planning (03)
Planning with state-space search

Alban Grastien
alban.grastien@rsise.anu.edu.au
Planning procedures are often state-space search problem, i.e. find a path on a state-space

- Nodes = states of the world
- Transitions between nodes = actions
- Path on the state-space = plan

It is possible to explore the state-space in different ways

- forward, backward
- with different strategies (breath-first, depth-first, best-first, greedy, . . .)
- using heuristics

The STRIPS representation enables an efficient exploration
Forward search

Take(D, E)

Take(A, B)
Forward search: a general algorithm

General algorithm

param: s_0, O, g

$states = \{s_0\}$

$\pi(s_0) = \langle \rangle$

$E(s_0) = \{a | a \text{ is a ground instance of an operation } \in O \text{ such that } \text{PRECOND}(a) \text{ is satisfied in } s_0 \}$

while true **do**

if $states = \emptyset$ **then** return failure **end if**

choose a state $s \in states$

if $s \in g$ **then** return $\pi(s)$ **end if**

if $E(s) = \emptyset$ **then**

remove s from $states$

else

choose and remove an action $a \in E(s)$

$s' \leftarrow \gamma(s, a)$

if $s' \notin states$ **then**

$\pi(s') = \pi(s).a$

$E(s') = \{a | a \text{ is a ground instance of an operation } \in O \text{ such that } \text{PRECOND}(a) \text{ is satisfied in } s' \}$

end if

end if

end while
Forward search: a general algorithm

STRIPS algorithm

param: \(s_0, O, g \)

\[\text{states} = \{ s_0 \} \]

\[\pi(s_0) = \langle \rangle \]

\[E(s_0) = \{ a \mid a \text{ is a ground instance of an operation} \in O \text{ such that } \text{PRECOND}(a) \subseteq s_0 \} \]

while true **do**

if \(\text{states} = \emptyset \) **then** return failure **end if**

choose a state \(s \in \text{states} \)

if \(g \subseteq s \) **then** return \(\pi(s) \) **end if**

if \(E(s) = \emptyset \) **then**

remove \(s \) from \(\text{states} \)

else

choose and **remove** an action \(a \in E(s) \)

\[s' \leftarrow s \setminus \text{EFF}^-(a) \cup \text{EFF}^+(a) \]

if \(s' \notin \text{states} \) **then**

\[\pi(s') = \pi(s).a \]

\[E(s') = \{ a \mid a \text{ is a ground instance of an operation} \in O \text{ such that } \text{PRECOND}(a) \subseteq s' \} \]

end if

end if

end while
Properties of forward search

- It can be used in conjunction with any search strategy (i.e. implementation of `choose`): breath-first, depth-first, iterative-deepening, greedy search, A^*, IDA*, ...
- It is sound (any solution found is a good solution)
- It is complete (it returns a solution if there is one), for instance:
 - breath-first is complete if the number of actions is finite
 - depth-first is complete if the state space is finite

1. small modifications should be made for this strategy
2. because the algorithm detects loops
Branching factor in forward search

Example:

- 1,000 planes and 100 airport
- actions: one plane go from an airport to another airport
- goal: plane P_{153} in Rennes and plane P_{542} in Le Mans

⇒ 100,000 possible actions from each states
⇒ 100,000 different possible states after the first action
⇒ $\approx 10^{10}$ different possible states after the second action

How to cope with this?

- domain-specific: search control rules, heuristics
- domain-independant: heuristics automatically generated from the STRIPS problem description
Search control knowledge

Knowledge on what constitutes a promising plan in the domain
Constraints on the plan
Temporal logic with First Order Logic
 ▶ Example: every stop of an elevator is made on a floor where a passenger is waiting or that is the destination of a passenger

\[\square (\forall f_2 : \bigcirc \text{atFloor}(\text{Elevator}, f_2) \Rightarrow ((\exists f_1 : f_1 \neq f_2 \wedge \text{atFloor}(\text{Elevator}, f_1)) \Rightarrow ((\exists p : \text{waiting}(p) \wedge \text{atFloor}(p, f_2)) \lor (\text{in}(p, \text{elevator}) \wedge \text{destination}(p, f_2))))) \]

Automatically prune the plan prefixes violating the control knowledge

cf. TLPlan [Bacchus & Kabanza, AIJ 2000]
The heuristic $\Delta(s, g)$ estimates the minimum cost (number of actions) needed from s to g

The estimation is made by considering only EFF^+

- $\Delta(s, \{p\}) = 0$ if $p \in s$
- $\Delta(s, \{p\}) = \infty$ if $\forall a \in A : p \notin \text{EFF}^+(a)$
- $\Delta(s, \{p\}) = 1 + \min_{a \in A} \{\Delta(s, \text{PRECOND}(a) | p \in \text{EFF}^+(a))\}$
- $\Delta(s, g) = \max_{p \in g} \{\Delta(s, \{p\})\}$

This heuristic is admissible
Regression planning (backward search)

Forward search
- starts from the initial state
- transition from s leads to the new state $\gamma(s, a)$

Backward search
- starts from the goal (set S of states \neq state)
- transition from S leads to a new set of states $\gamma^{-1}(S, a)$

Two problems for the backward search:
- Which actions a to consider (relevance)?
- What is the definition of $\gamma^{-1}(S, a)$?
Inverse state transitions

If we reach an state s such that a is applicable in s and $g \subseteq \gamma(s, a)$, then we found a plan

- if $g \cap \text{Eff}^-(a) \neq \emptyset$, then $g \not\subseteq \gamma(s, a)$ (do not lead to a goal state)
- if $g \cap \text{Eff}^+(a) = \emptyset$ and $\gamma(s, a) \subseteq g$, then $s \subseteq g$ (we have already found a plan)

An action a is **relevant** to a goal g if:

- it makes at least one of g’s propositions true:
 $g \cap \text{Eff}^+(a) \neq \emptyset$
- it does not make any of g’s proposition false:
 $g \cap \text{Eff}^-(a) = \emptyset$

What does the state s must be such that $g \subseteq \gamma(s, a)$

- a must be applicable: $\text{PRECOND}(a) \subseteq s$
- the goal literals in g not given by a must be in a:
 $g - \text{EFF}^+(a) \subseteq s$
- $s = g \setminus \text{EFF}^+(a) \cup \text{PRECOND}(a)$
Backward search – example

Goal state g: $OnTable(C) \land On(B, C) \land OnTop(B)$

Relevant actions:
- $PutOn(B, C)$
- $Take(A, B), \ldots, Take(E, B)$
- $Take(A, D), \ldots$

New goal state $\gamma^{-1}(g, a)$:
$OnTable(C) \land On(B, C) \land On(A, B) \land On(A)$
Backward search: a general algorithm

General algorithm

\textbf{param:} \(s_0, O, g \)
\(\text{statesets} = \{g\} \)
\(\pi(g) = \langle \rangle \)
\(E(g) = \{ a \mid a \text{ is a ground instance of an operation } \in O \text{ such that } \gamma(a, g)^{-1} \neq \emptyset \text{ and } \gamma(a, g)^{-1} \not\subseteq g \} \)

\textbf{while} true \textbf{do}
\hspace{1em}if \text{statesets} = \emptyset \textbf{ then return failure end if}
\hspace{1em}choose a state set \(S \in \text{statesets} \)
\hspace{1em}if \(s_0 \in S \) \textbf{ then return } \pi(S) \textbf{ end if}
\hspace{1em}if \(E(S) = \emptyset \) \textbf{ then}
\hspace{2em}remove \(S \) from \text{statesets}
\hspace{1em}else
\hspace{2em}choose and remove an action \(a \in E(S) \)
\hspace{2em}\hspace{1em}\(S' \leftarrow \gamma^{-1}(S, a) \)
\hspace{2em}if \(S' \not\in \text{statesets} \) \textbf{ then}
\hspace{3em}\(\pi(S') = a.\pi(S) \)
\hspace{3em}\hspace{1em}E(S') = \{ a \mid a \text{ is a ground instance of an operation } \in O \text{ such that } \gamma(a, S')^{-1} \neq \emptyset \text{ and } \gamma(a, S')^{-1} \not\subseteq S' \} \)
\hspace{2em}end if
\hspace{1em}end if
\hspace{1em}end while
STRIPS algorithm

param: s_0, O, g

statesets = \{g\}

$\pi(g) = \langle \rangle$

$E(g) = \{a \mid a \text{ is a ground instance of an operation } \in O \text{ such that } g \cap Eff^-(a) = \emptyset \text{ and } g \cap Eff^+(a) \neq \emptyset\}$

while true **do**

 if statesets = \emptyset **then** return failure **end if**

 choose a state set $S \in$ statesets

 if $S \subseteq s_0$ **then** return $\pi(S)$ **end if**

 if $E(S) = \emptyset$ **then**
 remove S from statesets
 else
 choose and remove an action $a \in E(S)$
 $S' \leftarrow S \setminus Eff^+(a) \cup$ PRECOND(a)

 if $S' \notin$ statesets **then**
 $\pi(S') = a.\pi(S)$
 $E(S') = \{a \mid a \text{ is a ground instance of an operation } \in O \text{ such that } S' \cap Eff^- = \emptyset \text{ and } S' \cap Eff^+(a) \neq \emptyset\}$
 end if
 end if

end while
Properties of backward search

- It can be used in conjunction with any search strategy (i.e. implementation of choose): breath-first, depth-first, iterative-deepening, greedy search, A∗3, IDA∗, . . .
- It is sound (any solution found is a good solution)
- It is complete (it returns a solution if there is one), for instance:
 - breath-first is complete if the number of actions is finite
 - depth-first is complete if the state space is finite4

- Improvement: it is possible not to add a subgoal S if it is a subset of S′ ∈ statesets

\[^3\]small modifications should be made for this strategy
\[^4\]because the algorithm detects loops
Lifting

The branching factor can be substantially reduced if we partially instantiate the operators.

Example:

1. Take \((A, B)\)
2. Take \((D, B)\)
3. Take \((E, B)\)
The branching factor can be substantially reduced if we partially instantiate the operators.

Example:

\[
Take(block_1, B)
\]