

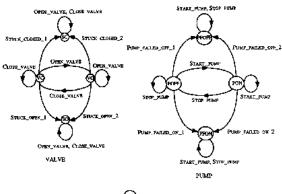
Diagnosis of Discrete-Event Systems

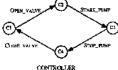
Alban Grastien

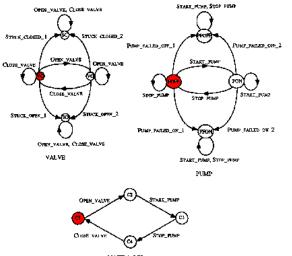
Discrete-Event Systems

Systems that are

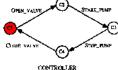
- dynamic (the state of the system changes over time)
- 2 modeled at a discrete level (no continuous variable)

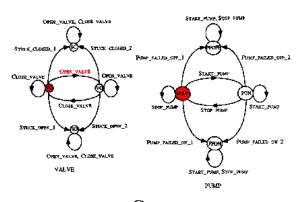






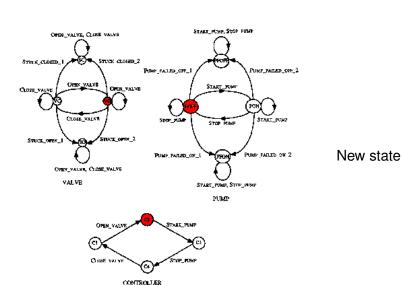
State of the system





Occurrence of event
Open valve





Language Framework

Let Σ be the set of events:

- a behaviour is a word on Σ (sequence of events, called trajectory): β ∈ Σ*
- the model is a <u>language</u>: $\mathcal{L}_M \subseteq \Sigma_*$

Example:

- $\beta = aaca$
- $\mathcal{L}_M = \{a, aa, ab, aac, abc, acc, aaca, abca, abcc...\}$

Observation

Some events $\Sigma_o \subseteq \Sigma$ of events are <u>observable</u> (sensors, commands, alarms, etc.)

When an observable event occurs, it is recorded.

The observation of a trajectory is the projection of the trajectory over the observable events (eliminate the unobservable events of the trajectory)

$$obs(traj)$$
 ∈ $Σ$ $o⋆$

A subset of unobservable events $\Sigma_f \subseteq (\Sigma \setminus \Sigma_o)$ are called <u>faulty</u>

The "faulty state" of a trajectory is the set of faulty events that occur on the trajectory:

$$\delta(traj) \subseteq \Sigma_f$$

Diagnosis of Discrete-Event Systems

System execution *traj** (unknown)

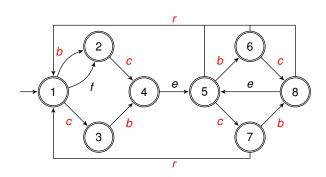
Diagnosis problem:

$$P = \langle \mathcal{L}_{M}, \Sigma_{o}, obs(traj^{*}), \Sigma_{f} \rangle$$

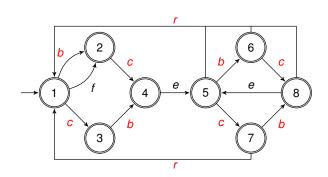
Diagnosis of DES: $\delta(traj^*)$ (impossible to find, in general)

Assuming the model is complete ($traj \in \mathcal{L}_M$), then $\delta(traj^*) \in \Delta(P)$ where

$$\Delta(\textit{P}) = \{\textit{F} \subseteq \Sigma_\textit{f} \mid \exists \textit{traj} \in \mathcal{L}_\textit{M}. \ \textit{obs}(\textit{traj}) = \textit{obs}(\textit{traj}^*) \land \delta(\textit{traj}) = \textit{F}\}$$

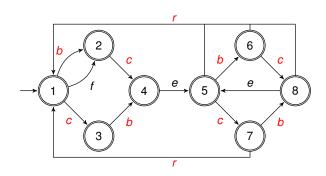


- *traj** = *bcebc*
- Observation: bcbc
- $\delta(traj^*) = \emptyset$

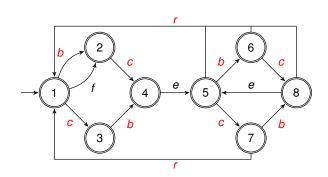


- traj* = bcebc
- Observation: bcbc
- $\delta(traj^*) = \emptyset$

- Nominal: traj_N = bcebc
- Faulty: no faulty traj_F!

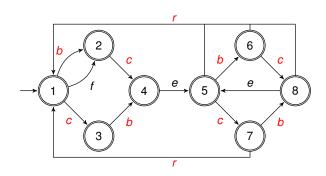


- traj* = fcebc
- Observation: cbc
- $\delta(traj^*) = \{F\}$

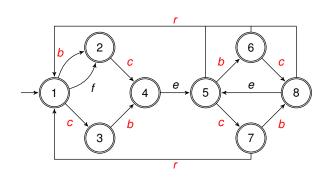


- traj* = fcebc
- Observation: cbc
- $\delta(traj^*) = \{F\}$

- Nominal: $traj_N = cbec$
- Faulty: *traj_F* = *fcebc*



- traj* = fcecb
- Observation: ccb
- $\delta(traj^*) = \{F\}$



- traj* = fcecb
- Observation: ccb
- $\delta(traj^*) = \{F\}$

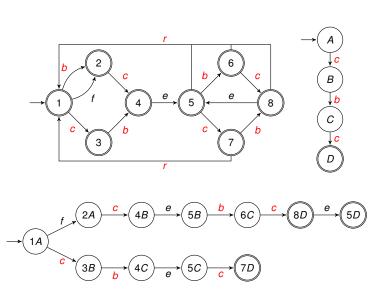
- Nominal: no nominal traj_N
- Faulty: *traj_F* = *fcecb*
- $\Delta = \{ \{F\} \}$

How to Compute the Diagnosis

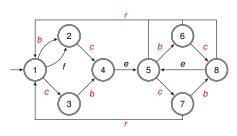
- Represent the observation as an automaton
- Synchronise the model and the observation
- Check whether one/all trajectories contains a faulty event

How to Compute the Diagnosis

Illustration

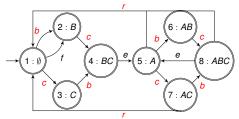


State Variables



Define a set *V* of Boolean properties (state variables) such that each state of the DES is associated with a different set of properties.

State Variables

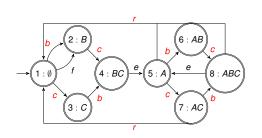


Define a set *V* of Boolean properties (state variables) such that each state of the DES is associated with a different set of properties.

Here: $V = \{A, B, C\}$

	1	2	3	4		6		8
Α					Υ	Υ	Υ	Υ
A B C		Υ		Υ		Υ		Υ
C			Υ	Υ			Υ	Υ

State Representation



A state is represented by a propositional formula:

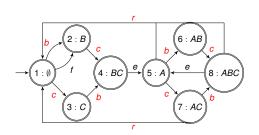
•
$$\Phi_5 = A \wedge \neg B \wedge \neg C$$

$$\bullet \ \Phi_6 = A \wedge B \wedge \neg C$$

•
$$\Phi_7 = A \wedge \neg B \wedge C$$

$$\bullet \ \Phi_8 = A \wedge B \wedge C$$

Set of States Representation



A set of states is represented by the disjunction of the representations of states.

E.g.:

•
$$\Phi_{\{1,3,5,7\}} = \Phi_1 \vee \Phi_3 \vee \Phi_5 \vee \Phi_7 = \neg B$$

NICTA

Operations on Sets (of States)

Operations on Sets (of States)

 \bigcirc Union $S_1 \cup S_2$

 $\Phi_{\mathcal{S}_1} \lor \Phi_{\mathcal{S}_2}$

② Intersection $S_1 \cap S_2$

Operations on Sets (of States)

 \bigcirc Union $S_1 \cup S_2$

 $\Phi_{\mathcal{S}_1} \vee \Phi_{\mathcal{S}_2}$

② Intersection $S_1 \cap S_2$

 $\Phi_{\mathcal{S}_1} \wedge \Phi_{\mathcal{S}_2}$

 \odot (Relative) Complement $Q \setminus S$

Operations on Sets (of States)

1 Union
$$S_1 \cup S_2$$

$$\Phi_{\mathcal{S}_1} \vee \Phi_{\mathcal{S}_2}$$

② Intersection
$$S_1 \cap S_2$$

$$\Phi_{\textit{S}_{1}} \wedge \Phi_{\textit{S}_{2}}$$

$$\odot$$
 (Relative) Complement $Q \setminus S$

$$\Phi_Q \wedge \neg \Phi_S$$

• Emptiness
$$S \stackrel{?}{=} \emptyset$$

Operations on Sets (of States)

$$\bigcirc$$
 Union $S_1 \cup S_2$

$$\Phi_{\mathcal{S}_1} \vee \Phi_{\mathcal{S}_2}$$

② Intersection
$$S_1 \cap S_2$$

$$\Phi_{S_1} \wedge \Phi_{S_2}$$

$$\odot$$
 (Relative) Complement $Q \setminus S$

$$\Phi_Q \wedge \neg \Phi_S$$

• Emptiness
$$S \stackrel{?}{=} \emptyset$$

$$\Phi_{\mathcal{S}} \stackrel{?}{\equiv} \bot$$

Inclusion
$$S_1 \stackrel{?}{\subseteq} S_2$$

Operations on Sets (of States)

- 2 Intersection $S_1 \cap S_2$
- (Relative) Complement $Q \setminus S$
- Emptiness $S \stackrel{?}{=} \emptyset$
- Inclusion $S_1 \stackrel{?}{\subseteq} S_2$

- $\Phi_{\mathcal{S}_1} \vee \Phi_{\mathcal{S}_2}$
- $\Phi_{\mathcal{S}_1} \wedge \Phi_{\mathcal{S}_2}$
- $\Phi_Q \wedge \neg \Phi_S$
- $\Phi_{\mathcal{S}}\stackrel{?}{=} \bot$
- $\Phi_{\mathcal{S}_1} \wedge \neg \Phi_{\mathcal{S}_2} \stackrel{?}{=} \bot$

Operations on Sets (of States)

② Intersection
$$S_1 \cap S_2$$

• Emptiness
$$S \stackrel{?}{=} \emptyset$$

Inclusion
$$S_1 \stackrel{?}{\subseteq} S_2$$

• Overlap
$$S_1 \cap S_2 \stackrel{?}{=} \emptyset$$

$$\Phi_{\mathcal{S}_1} \vee \Phi_{\mathcal{S}_2}$$

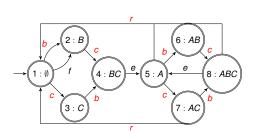
 $\Phi_{S_1} \wedge \Phi_{S_2}$

(Relative) Complement
$$Q \setminus S$$
 $\Phi_Q \land \neg \Phi_S$

$$\Phi_S \stackrel{?}{\equiv} \bot$$

$$\Phi_{S_1} \wedge \neg \Phi_{S_2} \stackrel{?}{\equiv} \bot$$

$$\Phi_{S_1} \wedge \Phi_{S_2} \stackrel{?}{\equiv} \bot$$



- Create "next" (primed) properties: $V' = \{A', B', C'\}$
- Create event variables: $V_{\Sigma} = \{b, c, r, e\}$

Transition $\langle 1, b, 2 \rangle$:

$$\bullet \ (\neg A \land \neg B \land \neg C) \land (b \land \neg c \land \neg r \land \neg e) \land (\neg A' \land B' \land \neg C')$$

All transitions of event b:

$$\bullet \ (A \leftrightarrow A') \land (\neg B \land B') \land (C \leftrightarrow C') \land (b \land \neg c \land \neg r \land \neg e)$$

NICTA NICTA

Operations on Sets of Transitions

Set of transitions labeled by event e

Operations on Sets of Transitions

Set of transitions labeled by event e

$$\Phi_T \wedge e$$

Set of transitions labeled by an event $e \in \Sigma'$

Operations on Sets of Transitions

Set of transitions labeled by event e

$$\Phi_T \wedge e$$

Set of transitions labeled by an event $e \in \Sigma'$

$$\Phi_{\mathcal{T}} \wedge \left(\bigvee_{e \in \Sigma'} e\right)$$

Subset of transitions from τ originating from a state of $\boldsymbol{\mathcal{S}}$

Operations on Sets of Transitions

Set of transitions labeled by event e

$$\Phi_T \wedge e$$

Set of transitions labeled by an event $e \in \Sigma'$

$$\Phi_{\mathcal{T}} \wedge \left(\bigvee_{\boldsymbol{e} \in \Sigma'} \boldsymbol{e}\right)$$

Subset of transitions from τ originating from a state of S

$$\Phi_{\tau} \wedge \Phi_{S}$$

Set of targets of a set τ of transitions

Operations on Sets of Transitions

Set of transitions labeled by event e

$$\Phi_T \wedge e$$

Set of transitions labeled by an event $e \in \Sigma'$

$$\Phi_{\mathcal{T}} \wedge \left(\bigvee_{m{e} \in \Sigma'} m{e}\right)$$

Subset of transitions from τ originating from a state of ${\it S}$

$$\Phi_{\tau} \wedge \Phi_{S}$$

Set of targets of a set τ of transitions

$$(\exists V. \exists V_{\Sigma}. \Phi_{\tau}) [V'/V]$$

Symbolic Representation of Automata

• The set of states reached from S through a single transition labeled by an event of Σ'

• The set of states reached from S through a single transition labeled by an event of Σ'

$$\left(\exists V.\ \exists V_{\Sigma}.\ \Phi_{\mathcal{T}} \land \left(\bigvee_{e \in \Sigma'} e\right) \land \Phi_{\mathcal{S}}\right) [V'/V]$$

2 The set of states reached from S through exactly two transitions labeled by events of Σ'

• The set of states reached from S through a single transition labeled by an event of Σ'

$$\left(\exists V.\ \exists V_{\Sigma}.\ \Phi_{\mathcal{T}} \land \left(\bigvee_{S \in \Sigma'} e\right) \land \Phi_{\mathcal{S}}\right) [V'/V]$$

② The set of states reached from S through exactly two transitions labeled by events of Σ'

$$\left(\exists \textit{V}.\ \exists \textit{V}_{\Sigma}.\ \Phi_{\textit{T}} \land \left(\bigvee_{\textit{e} \in \Sigma'} \textit{e}\right) \land \left(\exists \textit{V}.\ \exists \textit{V}_{\Sigma}.\ \Phi_{\textit{T}} \land \left(\bigvee_{\textit{e} \in \Sigma'} \textit{e}\right) \land \Phi_{\textit{S}}\right) [\textit{V}'/\textit{V}]\right.$$

• The set of states reached from S through a single transition labeled by an event of Σ'

$$\left(\exists \mathit{V}.\ \exists \mathit{V}_{\Sigma}.\ \Phi_{\mathit{T}} \land \left(\bigvee_{e \in \Sigma'} e\right) \land \Phi_{\mathit{S}}\right) [\mathit{V}'/\mathit{V}]$$

3 The set of states reached from S through zero or one transition labeled by an event of Σ'

• The set of states reached from S through a single transition labeled by an event of Σ'

$$\left(\exists V.\ \exists V_{\Sigma}.\ \Phi_{\mathcal{T}} \land \left(\bigvee_{e \in \Sigma'} e\right) \land \Phi_{\mathcal{S}}\right) [V'/V]$$

③ The set of states reached from S through zero or one transition labeled by an event of Σ'

$$\Phi_{\mathcal{S}} \vee \left(\exists V. \exists V_{\Sigma}. \Phi_{\mathcal{T}} \wedge \left(\bigvee_{e \in \Sigma'} e\right) \wedge \Phi_{\mathcal{S}}\right) [V'/V]$$

The set of states reached from S through any number of transitions labeled by events of Σ'

The set of states reached from S through any number of transitions labeled by events of Σ'

$$\mu Z.\Phi_{S} \vee \left(\exists V. \exists V_{\Sigma}. \Phi_{T} \wedge \left(\bigvee_{e \in \Sigma'} e\right) \wedge Z\right) [V'/V]$$

The set of states reached from S through any number of transitions labeled by events of Σ'

$$\mu Z.\Phi_{S} \vee \left(\exists V. \exists V_{\Sigma}. \Phi_{T} \wedge \left(\bigvee_{e \in \Sigma'} e\right) \wedge Z\right) [V'/V]$$

Implementation

$$\Phi := \Phi_{\mathcal{S}}$$

$$\Phi' := \Phi$$
repeat
$$\Phi := \Phi'$$

$$\Phi' := \Phi \vee \left(\exists V. \ \exists V_{\Sigma}. \ \Phi_{\mathcal{T}} \wedge \left(\bigvee_{e \in \Sigma'} e\right) \wedge \Phi\right) [V'/V]$$
 until $\Phi = \Phi'$

Diagnosis as a State Estimation Problem

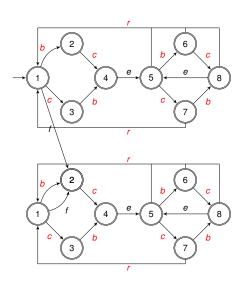
Create 2^n copies of the model, where n is the number of faults

Let $Q_{obs(traj^*)}$ be the set of states q such that $I \xrightarrow{obs(traj^*)} q$, then

$$F \in \Delta(\textit{obs}(\textit{traj}^*)) \Leftrightarrow Q_F \cap Q_{\textit{obs}(\textit{traj}^*)} \neq \emptyset$$

Diagnosis as a State Estimation Problem

Example



Diagnosis as a State Estimation Problem

Unfolding the Model

- Initial set S_0^+ of states:
 - {*I*}
- Set S_0^- of states before first observation:
 - ullet Set of states reached from S_0^+ through unobservable transitions
- Set S₁⁺ of states after first observation:
 - Set of states reached from S₀⁻ through a transition labeled by o₁

. . .

- Set S_i^+ of states after *i*th observation:
 - Set of states reached from S_{i-1}^- through a transition labeled by o_i
- Set S_i^- of states before i + 1th observation:
 - Set of states reached from S_i^+ through unobservable transitions

Diagnosis with Symbolic Tools

Is the fault set F part of the diagnosis?

```
S:=\{I\} for all Observation fragment o_i from obs(traj^*) do S:=\{q'\in Q\mid \exists w\in (\Sigma\setminus\Sigma_o)\star.\ \exists q\in S.\ q\stackrel{w}{\to}q'\} S:=\{q'\in Q\mid \exists q\in S.\ q\stackrel{o}{\to}q'\}. end for return S\cap Q_F\neq\emptyset
```

Diagnosis with Symbolic Tools

Is the fault set F part of the diagnosis?

```
\begin{array}{l} \Phi := \Phi_I \\ \text{for all Observation fragment } o_i \text{ from } obs(traj^*) \text{ do} \\ \Phi := \mu Z.\Phi \vee \left(\exists V. \ \exists V_\Sigma. \ \Phi_T \wedge \left(\bigvee_{e \in \Sigma \setminus \Sigma_o} e\right) \wedge Z\right) [V'/V] \\ \Phi := \left(\exists V. \ \exists V_\Sigma. \ \Phi_T \wedge o \wedge \Phi\right) [V'/V] \\ \text{end for} \\ \text{return } \Phi \wedge \Phi_F \not\equiv \bot \end{array}
```